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Abstract
The analysis of satellite imagery will prove a
crucial tool in the pursuit of sustainable devel-
opment. While Convolutional Neural Networks
(CNNs) have made large gains in natural image
analysis, their application to multi-spectral satellite
images (wherein input images have a large number
of channels) remains relatively unexplored. In this
paper, we compare different methods of leveraging
multi-band information with CNNs, demonstrating
the performance of all compared methods on the
task of semantic segmentation of agricultural vege-
tation (vineyards). We show that standard industry
practice of using bands selected by a domain ex-
pert leads to a significantly worse test accuracy than
the other methods compared. Specifically, we com-
pare: using bands specified by an expert; using all
available bands; learning attention maps over the
input bands; and leveraging Bayesian optimisation
to dictate band choice. We show that simply using
all available band information already increases test
time performance, and show that the Bayesian op-
timisation, novelly applied to band selection in this
work, can be used to further boost accuracy.

1 Introduction
The analysis of satellite imagery will play a critical role in the
pursuit of the UN’s sustainable development goals (SDGs)
[United Nations, 2015]. Analysis of this data has been pro-
posed for applications from identifying clean water sources;
to surveillance of human trafficking; to estimating the eco-
nomic well-being of cities in developing countries [Digital-
Globe, 2019]. Recent work has shown that earth observation
data can partially or majorly contribute to a quarter (55 of
207) of the SDG indicators [Andries et al., 2019]. Further-
more, the global Geographic Information System (GIS) mar-
ket is expected to be worth over 14 billion dollars by 2025,
with an estimated 12% year-on-year growth [Research and
Markets, 2020].

Meanwhile, convolutional neural networks (CNNs) have
recently made large advances in most natural image analy-
sis tasks. However, differently to ‘RGB’ natural images, a
key feature of satellite imagery is its multi-spectral nature,

Figure 1: In this paper we compare methods for optimal utilisation
of multi-spectral satellite images with CNNs. The left image shows
the RGB channels of an image used to test the methods compared in
this paper. The expert annotation of the target region (a vineyard) is
also shown overlayed on the right.

in which information on radiation of multiple wavelengths
is recorded and can be leveraged to gain insight. It is thus
important that models which operate on satellite imagery are
designed to optimally utilise the multi-band information.

A number of works have successfully applied CNNs to
satellite imagery, with various methods proposed to deal with
the multi-band information [Ben Hamida et al., 2018][Li et
al., 2017][Lorenzo et al., 2018]. However, due to a lack of
consistent adoption of the same datasets, it is difficult to com-
pare the performances of these methods. The purpose of this
work is to provide a robust comparison of a number of repre-
sentative techniques on the same data. In this paper we use
images of vineyards to train and evaluate our models, with
the task being the semantic segmentation of the crop (grapes)
from the background. An example image is given in Figure
1, with the RGB channels shown alongside an expert manual
annotation.

In this work, we apply a standard deep learning architec-
ture — the U-Net [Ronneberger et al., 2015] — to the seg-
mentation task, and specifically explore how the architecture
can best utilise multi-spectral data. To explore how to best
combine information in these bands, we compare the follow-
ing methods: using bands as specified by a GIS expert; us-
ing all available bands; learning attention maps over the input
bands; and leveraging Bayesian optimisation over the band
choice. We demonstrate that simple methods can be used to
significantly improve the performance of the model over ex-
pert band choice which, surprisingly, is still often preferred in
industrial settings. We further show the performance boost af-
forded by the Bayesian optimisation, which to our knowledge
is applied to band selection for the first time in this work.



The remainder of this paper is set out as follows: we first
give a summary of the related work in this area in Section 2,
before describing the methods we compare for multi-spectral
band selection applied to the task of satellite image segmenta-
tion in Section 3. Section 4 presents our experimental results,
including a description of the data, implementation details,
and assessment of the methods’ performances.

2 Related Work
A number of methods have been proposed for the task of band
selection in the context of multi-spectral satellite image anal-
ysis, which can be broadly categorised into: manual methods;
those based on classical probabilistic or information theory
methods; and deep learning based techniques.

One of the first works in this space, [Clodius et al., 1998],
describes various multi-spectral satellite bands, with the anal-
ysis providing heuristcs which can be used for manual band
selection. In [Koonsanit et al., 2012], the authors propose the
use of a principal component analysis (PCA) based method
for band selection, evaluating performances within a cluster-
ing framework. [Feng et al., 2016] propose a probabilistic
memetic search algorithm to identify the optimal bands for
classification in satellite imagery.

Within a deep learning framework, [Audebert et al., 2019]
review various deep learning approaches for hyper-spectral
classification. The processing of multi-band information has
been tackled with CNNs both by alternating 1D (band-wise)
and 2D (spatial) convolutions [Ben Hamida et al., 2018], and
with 3D convolutions [Li et al., 2017]. [Lorenzo et al., 2018]
performed band selection from multi-spectral imagery using
attention-based methods over all the available bands, focus-
ing on the interpretability the method provides.

The CNN architecture we use as a backbone for our ex-
periments is the widely adopted U-Net segmentation network
[Ronneberger et al., 2015]. The model has previously been
applied to satellite imagery, for example [Efremova et al.,
2019] for Sentinel imagery and [Jones et al., 2020] for Digi-
talGlobe data. We also note that we do not leverage the tem-
poral dimension of satellite data, which could improve perfor-
mance [Vuolo et al., 2018], but instead compare all methods
with a simple but effective CNN architecture on static images.

To our knowledge, the closest related work to that detailed
in this paper is [Zhang et al., 2019], who compare a num-
ber of approaches for band selection for multi-spectral image
classification with support vector machines (SVMs). Their
compared methods include expert band selection and full se-
lection of bands, with the study concluding that the inclusion
of all bands outperforms expert selection in this case.

In this paper, we compare a number of representative meth-
ods for band selection from multi-spectral imagery within a
deep learning framework, evaluating all methods on the same
data. The compared methods include: expert band selec-
tion; selection of all bands; an attention-based method; and
Bayesian hyper-parameter optimisation for band selection.

3 Methods
In this section we describe the methods we compare on the
task of multi-spectral satellite image segmentation. First, we
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Figure 2: Illustration of a squeeze-excite block applied as an atten-
tion mechanism over a multi-spectral input image.

discuss two forms of manual band selection: expert band se-
lection — which we use as a reference — and providing all
bands to the model. We then describe a model which uses an
attention-based mechanism to select the optimal channel con-
figuration, before concluding with a description of Bayesian
hyper-parameter optimisation, which treats the selected chan-
nel indices as hyper-parameters.

3.1 Manual Band Selection
We first observe the protocol adopted in many industrial satel-
lite image analysis tasks, and use expert domain knowledge
to select the optimal bands for the task at hand. For this
task, which involves the segmentation of vegetation, we use
‘Red’, ‘Green’ and ‘Infrared’ channels. We also use ‘SWIR’
(short-wave infrared) which is useful specifically for agricul-
tural vegetation. The limitation of using domain knowledge
is that it is often difficult to acquire and changes depending on
the target application. Furthermore, utilisation of such a min-
imal set of bands may discard useful information and lower
performance.

We also run experiments with the opposite approach, in
which we provide all bands as input to the model. The possi-
ble limitation with this method is that it encodes no inductive
bias on the task and could lead to model overfitting.

3.2 Attention Over Channels
We now present a method which explicitly learns attention
over the channels of the input image, where we leverage the
method used in ‘Squeeze-and-Excitation Networks’ [Hu et
al., 2018], in which attention over intermediate feature maps
is used to improve performance.

Intuitively, squeeze-excite blocks spatially pool all infor-
mation in an input feature, producing an intermediate vector,
before passing the result through a small neural network to
produce a vector of values which act as weights (attention)
over the input channels.

Concretely, consider an input feature x ∈ RH×W×C . The
feature undergoes global average pooling to produce an in-
termediate vector, u ∈ R1×1×C , compressing all informa-
tion in each channel to a single scalar value. This vector is
then passed through a small multi-layer perceptron (MLP)
with sigmoid activations on the output layer to produce the



channel weights, h ∈ R1×1×C . The output representation,
y ∈ RH×W×C , is then computed by multiplying the input by
the channel weights as: y = x ∗ h. The process is illustrated
in Figure 2.

The use of an MLP to map global channel information to
channel weights allows the mapping to be a non-linear com-
bination of the input channels. We implement the MLP as a
2-layer neural network, where the intermediate representation
introduces a bottleneck, such that it has r = 4 times fewer
neurons than the MLP’s input, u. Differently to the Squeeze-
and-Excitation networks, where these blocks are used to learn
channel-wise dependencies over intermediate feature maps,
we use the squeeze-excite block only on the multi-spectral
input image. In this way, we learn attention over the in-
put channels, effectively learning which channels contain the
most salient information.

3.3 Bayesian Hyper-parameter Optimisation
The final band selection method with which we experiment is
treating the choice of bands as a hyper-parameter to be tuned.
Typically, hyper-parameters are tuned by training a number of
models with varying hyper-parameter settings (varied by grid
search) and choosing the optimal setting based on test or vali-
dation performance. For a small number of hyper-parameters,
this is often sufficient. However, in this case, with a large
number of bands, the grid search method becomes infeasible.

As an alternative, we experiment with the use of Bayesian
hyper-parameter optimisation [Snoek et al., 2012]. In this
section, we briefly describe the Gaussian Process (GP), be-
fore outlining how it can be used for hyper-parameter optimi-
sation and concluding by detailing how we use the method to
choose the optimal band indices from multi-spectral data.

Gaussian Processes
The idea behind Bayesian hyper-parameter optimisation is to
place a Gaussian Process prior over the domain of the hyper-
parameter in question. A GP is considered as a probability
distribution over functions, with the nature of these functions
defined by a mean function, µ(x), and a covariance kernel,
k(x, x′). Here, the function over which we want to obtain a
distribution is the mapping between the hyper-parameter set-
ting, x, and the model accuracy. In this work, we use the
widely used Matérn kernel as our covariance function and
adopt common practise of a zero mean function.

Optimisation through Gaussian Processes
Gaussian Process hyper-parameter optimisation involves iter-
atively: (1) sampling a point from the domain of the hyper-
parameter; (2) evaluating the model performance at this point;
and (3) using the GP to estimate the best point from the do-
main to next sample, conditioning the estimate on the last and
all previously sampled points.

The process is conceptually simple, leaving only the ques-
tion of the optimal way to leverage the GP to estimate the
next point to sample. A number of methods have been pro-
posed for this [Wilson et al., 2018] — in this work, we find
the point which maximises the expected improvement of the
test loss under the GP model, as:

xnext = argmax
x

E [max(0, fbest − f(x))] (1)

Here, fbest represents the best test loss observed so far,
and the expectation is optimised with Monte Carlo methods
[Snoek et al., 2012].

GPs for optimal band selection
In this paper, we use a GP to learn the mapping from the
choice of channel indices of multi-spectral data to the CNN
accuracy. Specifically, for each band, we introduce a binary
variable xi ∈ {0, 1}, which represents whether or not the ith
band is given as input to the CNN. Together, for D possible
bands to select from, the hyper-parameter to be tuned is x ∈
{0, 1}D.

4 Experimental Results
In this section we present our experimental results, including
a description of the data used for the task and the experimen-
tal setup. Section 4.3 details both the qualitative and quaniti-
tative performances of the compared methods.

4.1 Data
For the experiments in this paper, we use data captured by
the Sentinel-2 satellite, which captures multi-spectral data at
a resolution of either 10m, 20m or 60m. The data is acquired
via requests to the SentinelHub API [SentinelHub, ], which
preprocesses the raw data before providing 12-band informa-
tion given a specified geolocation.

In this work, we tackle the task of vineyard (grape) seg-
mentation. We take data from two different geolocations in
South-West Australia (satellite images of two different vine-
yards), using one location for training the model and another
for testing. The training and test images both cover an area
of 2.90 squared kilometres, and we request training images
at 25 distinct timestamps from the year 2019 to increase the
volume of the training data (requesting 2 timestamps for test-
ing). We use the SentinelHub API to request data without
cloud cover (maximum cover of 10%) and normalise the data
by the training images’ mean and variance. To train the mod-
els described in this work, we obtain manual annotations of
the target regions from a GIS expert. The test vineyard is
shown in Figure 1 alongside the expert annotation.

The images received from SentinelHub are too large to be
processed at once due to GPU memory constraints. To over-
come this, we break each image into a number of smaller
tiles, passing each tile to the model in turn before reconstruct-
ing the tiles of the model’s predictions. The resulting dataset
consists of 11943 tiles for training, and 928 tiles for testing,
each with dimensions 96 × 96 × 12 (spatial dimensions by
number of bands).

4.2 Implementation Details
The backbone CNN architecture used for these experiments
is the U-Net [Ronneberger et al., 2015]), which provides near
state-of-the-art results for a number of semantic segmentation
tasks while retaining a simple Encoder - Decoder structure.

We train the network on the 11943 training tiles with re-
spect to the intersection-over-union score, which is a differ-
entiable proxy for the Dice coefficient. The Dice coefficient
is often of interest to end users of segmentation models as it
is a reasonable measure of the qualitative similarity between
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Figure 3: Predictions of the best model from each of the compared models on the test image.

Dice Coefficient (%)
Expert band selection 81.15 ± 2.95
All bands selected 84.72 ± 1.85
Attention over bands 84.68 ± 1.81
Bayesian optimisation 86.53 ± 0.55

Table 1: Dice performance (µ± σ) of the compared methods on the
test images. Results are shown averaged over 10 models. For Rows
1-3, the 10 models are trained with 10 random seeds. For Row 4, the
results represent the 10 best models from the Bayesian optimisation.

the model prediction and ground truth. We adopt the Adam
optimizer for gradient descent [Kingma and Ba, 2015] with
an initial learning rate of 0.01, using a mini-batch size of
128. For the manual band selection and attention based meth-
ods, we ensure our results are representative and reproducible
by training models multiple (10) times with differing random
seeds. For the Bayesian optimisation, we warm start the op-
timisation process by randomly sampling 5 points in the do-
main of x, before taking 35 further samples and choosing the
best 10 models. We note that each sample requires training
and evaluating the CNN, a point upon which we elaborate
in Section 4.3. All models were trained on a single Tesla
V100 for 25 epochs, which we observed as sufficient for the
plateauing of training and evaluation performance.

4.3 Discussion
In this section we compare the performance of the following
methods of band selection from satellite data: (1) manual se-
lection of bands using expert knowledge; (2) use of all avail-
able bands; (3) learned attention over bands; (4) selection of
bands through Bayesian optimisation.

The Dice performances of our compared methods are given
in Table 1. For the methods described in the top three rows,
we show the statistics of performances of models trained from
10 random seeds. For band selection through Bayesian opti-
misation, we show the statistics of the 10 best performing
hyper-parameter (band index) settings.

Figure 3 shows the predictions of the best performing
model from each of the compared methods on the test vine-
yard. The qualitative results reasonably reflect the figures
from Table 1. The expert band selection performs most
poorly, with large areas of the target area omitted. Further-
more, use of all bands and the attention mechanism give vi-
sually similar results. Finally, we see that the best model re-
turned by the Bayesian optimisation covers more of the target
area than the other compared methods.

We highlight that expert band selection has a signifi-

cantly lower performance than the other compared methods.
Though this is likely due to the additional information avail-
able to the other methods, we find the result salient as expert
band selection is still standard practise in many industrial set-
tings. Simply providing information from all bands to the
model is sufficient to yield a 3.6% improvement in accuracy,
corroborating the work of [Zhang et al., 2019] with SVMs.

We also note that the introduction of attention over input
channels has a negligible affect on the test time accuracy over
the standard architecture. This can be explained as the con-
volution filters in the first layer of the of the standard archi-
tecture can learn to focus on specific channels of the input
image. We conclude that the inductive bias encoded via the
attention mechanism is not critical to the test performance.

Finally, we highlight the further performance boost pro-
vided by the Bayesian hyper-parameter optimisation. The
method provides an average 1.9% Dice improvement over
methods (2) and (3), and over 5% improvement over expert
band selection. This method does, however, come with sig-
nificant computational cost. The Gaussian Process optimisa-
tion was run for 40 iterations, each of which required train-
ing and evaluating the CNN. For the models discussed in this
paper, a standard U-Net architecture trained on a dataset con-
taining 12K images, each iteration took roughly 18 minutes.
As a result, a single run of GP optimisation took 13 hours on a
high performance GPU. Given that GP parameters may them-
selves need tuning, and that many datasets are far larger than
the one demonstrated upon in this work, the accuracy boost
afforded by this method may be deemed insufficient for the
extra computation required, depending on the task at hand.

5 Conclusion
In this work, we have compared methods for optimal utili-
sation of multi-spectral information in satellite imagery, ap-
plied to land cover segmentation with the example of vine-
yard detection. We compared four representative methods
of band selection in the context of deep learning models,
evaluating their performances on the same data. We have
explored two forms of manual band selection: expert band
selection, which we use as a reference, and providing all
bands to the model. We also compare a model which uses an
attention-based mechanism to learn the most salient bands,
and Bayesian hyper-parameter optimisation which we apply
to band selection for the first time in this work. Our experi-
ments demonstrated that using all available band information
significantly outperforms expert band selection and show that
the Bayesian optimisation can be leveraged to further boost
performance to 5% over expert selection.
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