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Abstract

In this paper, we present new results on the
fair and efficient allocation of indivisible goods
to agents whose preferences correspond to ma-
troid rank functions. This is a versatile valuation
class, with several desirable properties (monotonic-
ity, submodularity) which naturally models several
real-world domains. We use these properties to our
advantage: first, we show that when agent valu-
ations are matroid rank functions, a socially op-
timal (i.e. utilitarian social welfare-maximizing)
allocation that achieves envy-freeness up to one
item (EF1) exists and is computationally tractable.
We also prove that the Nash welfare-maximizing
and the leximin allocations both exhibit this fair-
ness/efficiency combination, by showing that they
can be achieved by minimizing any symmetric
strictly convex function of agents’ valuations over
utilitarian optimal outcomes. Moreover, for a sub-
class of these valuation functions based on max-
imum (unweighted) bipartite matching, we show
that a leximin allocation can be computed in poly-
nomial time.

1 Introduction

What is a good way of distributing a collection of indivisible
goods amongst a population of agents who value them sub-
jectively? This question brings to mind two broad issues —
welfare and efficiency (overall utility of recipients/utilization
of goods) on the one hand, and fairness (how each agent per-
ceives her own share relative to those of others) on the other.
These notions can be formalized in many ways and it is nat-
ural to ask whether an allocation satisfying several of such
desiderata exists at all and, if yes, whether it can be com-
puted efficiently. The answer depends on the agents’ val-
uation functions for bundles (subsets) of goods. Most ex-
isting literature focusing on the existence and computational
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tractability of simultaneous fairness-efficiency guarantees in
the allocation of indivisible goods [Caragiannis et al., 2016;
Barman et al., 2018a; Barman et al., 2018b, etc.] assumes
that valuations are additive, i.e. the marginal benefit to an
agent for adding an item to her bundle is a fixed constant for
that agent-item pair, independent of the current bundle. At
present, little is known in this respect beyond the additive set-
ting. This is where our work comes in.

1.1 Our contributions and related work

In this paper, we consider valuations are given by matroid
rank functions, i.e. each agent has an idiosyncratic matroid
constraint [Oxley, 2011] over the items, and her value for a
bundle is the size of a maximum independent set of the ma-
troid included in the bundle. The alternative defining char-
acteristics of this valuation class are: monotonicity, submod-
ularity, and binary marginal gains, i.e. adding an item to an
agent’s bundle either keeps her value unchanged or increases
the value by exactly 1; and, if the marginal gain of adding
an item to a bundle is zero, it must be zero if the item is
added to a superset of that bundle. This class can naturally
arise in many practical problems. Suppose that a government
body wishes to assign public goods to individuals of differ-
ent minority groups (e.g. kindergarten slots to children from
different neighborhoods/socioeconomic classes, as in certain
U.S. public school admission systems; flats in public hous-
ing estates to applicants of different ethnicities, as in Singa-
pore [Benabbou er al., 2018]), where each individual either
approves or disapproves each good (also called dichotomous
preferences). If diversity policies require fairness towards
such pre-defined groups, we can model each group as an
agent whose valuation function is based on optimally match-
ing approved goods to its constituent individuals [Benabbou
et al., 2019]. We call such valuation functions (0, 1)-OXS
valuations (see Section 3). Certain additional constraints,
when imposed on such matching problems, induce valuations
that are no longer (0, 1)-OXS but retain submodularity, e.g.
hard limits on items due to budgets or exogenous quotas (So-
cioeconomic status-based, ethnicity-based, etc.). The prob-
lem of assigning of courses to students [Budish, 2011] can
be handled in this manner when students have underlying di-
chotomous preferences: each student desires a set of (limited)
seats in courses allowed by her personal schedule, and her
valuation is the maximum number of courses she can be as-



signed subject to logistical/academic constraints such as time
clashes between courses. All such valuation functions belong
to the broader class of matroid rank valuations.

Our fairness criteria are based on envy: an agent envies an-
other if she believes that her bundle is worth less than that of
the latter [Foley, 1967]. Envy-free (EF) allocations that are
also Pareto optimal or PO (i.e. there is no reallocation that
improves the valuation of one agent without worsening that
of at least one other agent) or even complete (i.e. each item
is allocated to at least one agent) are not guaranteed to exist
for indivisible items. This leads to a relaxation called envy-
freeness up to one good (EF1): for every pair of agents ¢ and
7, j’s bundle contains some item whose removal results in ¢
not envying j. Budish [2011] was the first to formalize the
EF1 concept, but it implicitly appears in Lipton et al. [2004],
who design a polynomial-time algorithm that returns a com-
plete, EF1 allocation for monotone valuations.

When all agents have additive valuations, Caragiannis et al.
[2016] show that allocations that are both EF1 and PO ex-
ist, specifically the ones that maximize the product of agents’
utilities — also known as max Nash welfare (MNW). Bar-
man et al. [2018a] and Barman et al. [2018b] show that an
allocation with these properties can be computed in (pseudo-
)polynomial time. We establish similar guarantees for our
non-additive valuation class of interest. Here is a summary of
our main results:

(a) For matroid rank valuations, we show that an EF1 allo-
cation that also maximizes the utilitarian social welfare
or USW (hence is Pareto optimal) always exists and can
be computed in polynomial time.

(b) For matroid rank valuations, we show that leximinand
MNW allocations both possess the EF1 property.

(c) For matroid rank valuations, we provide a characteriza-
tion of the leximin allocations: we show that they are
identical to the minimizers of any symmetric strictly
convex function over utilitarian optimal allocations. We
obtain the same characterization for MNW allocations.

(d) For (0,1)-OXS valuations, we show that both leximin
and MNW allocations can be computed efficiently.

Our results imply some known results for binary additive val-
uations (subsumed by matroid rank functions): Aziz and Rey
[2019] show that the algorithm proposed by Darmann and
Schauer [2015] with an MNW allocation in mind outputs a
leximin allocation — in particular, this implies that the lex-
imin and MNW solutions coincide for binary additive valua-
tions; similar results are established by Halpern et al. [2020],
who also show that the leximin/MNW allocation is group-
strategyproof for agents with binary additive valuations. Fi-
nally, Babaioff et al. [2020] present a set of results similar
to our own in addition to showing the existence of a strate-
gyproof mechanism for matroid rank valuations. Our work
was developed independently, and is different from a techni-
cal perspective.

Our omitted proofs, clarifying examples, and further discus-
sions are available in the online full version of our paper
[Benabbou et al., 2020].

2 Model and definitions

For a positive integer 7, let [] denote the set {1,2,...,r}. We
have a set N = [n] of agents, anda set O = {01, ...,0p, } Of
items or goods. Subsets of O are referred to as bundles, and
each agent i € N has a valuation functionv; : 2° — R over
bundles that is normalized (i.e. v;(#) = 0) and monotone (i.e.
v;(S) < v;(T) whenever S C T); we assume polynomial-
time oracle access to v; for every 7 € N.

An allocation A of items to agents is a collection of n disjoint
bundles A4, ..., A,, such that UieN A; C O; the bundle A;
is allocated to agent 7 and we call v;(A;) agent i’s realized
valuation under the allocation A. Given an allocation A, we
denote by Ag the set of unallocated or withheld items, , i.e.
Ao =20\ U,en Ai An allocation is complete if every item is
allocated to some agent, i.e. Ay = (). We admit incomplete,
but clean allocations: a bundle S C O is clean for agent
¢ € N if it contains no item o € S for which agent ¢ has
zero marginal gain (i.e., A;(S \ {0};0) = 0, or equivalently
v;(S'\ {0}) = v;(9)); an allocation A is clean if each allo-
cated bundle A; is clean for the agent ¢ that receives it. It is
easy to ‘clean’ any allocation without changing any realized
valuation by iteratively revoking items of zero marginal gain

from respective agents and placing them in Ay.
Our fairness criteria are based on the concept of envy: agent

i envies agent j under an allocation A if v;(A4;) < v;(4;).
An allocation A is envy-free (EF) if no agent envies another.
We will use the following relaxation of the EF property due
to Budish [2011]: we say that A is envy-free up to one good
(EF1) if, for every i, j € N, 7 does not envy j or there exists
oin Aj such that vi(Ai) > Ui(Aj \ {O})

An allocation A’ is said to Pareto dominate the allocation A if
vi(A}) > vi(A;) for all agents i € N and v;(A}) > v;(4;)
for some agent j € N. An allocation is Pareto optimal (PO)
if it is not Pareto dominated by any other allocation. There are
several ways of measuring the welfare of an allocation [Sen,
1970]. Specifically, given an allocation A, (i) its utilitarian
social welfare is USW(A) £ S0 v;(A;); (ii) its egalitar-
ian social welfare is ESW(A) £ min;e y v;(A;); (iii) its Nash
welfare is NW(A) £ T,c vi(A4;). An allocation A is said
to be utilitarian optimal if it maximizes USW(A) among all
allocations. Since the maximum attainable NW(A) may be 0,
we use the following refinement of the maximum Nash social
welfare (MNW) criterion used in [Caragiannis et al., 2016]:
we find a maximal subset of agents, say Nyax C N, to which
we can allocate bundles of positive values, and compute an
allocation to agents in Np,,x that maximizes the product of
their realized valuations. If Ny, is not unique, we choose
the one that results in the highest product of realized valu-
ations. The leximin criterion is a lexicographic refinement
of the maximum egalitarian welfare concept. Formally, for
real n-dimensional vectors x and y, x is lexicographically
greater than or equal to y (denoted by >, vy) if and only
if £ = y, or  # y and for the minimum index j such that
x; # y; we have x; > y;. For each allocation A, we de-
note by 6(A) the vector of the components v;(4;) (i € N)
arranged in non-decreasing order. A leximin allocation A is
one that maximizes the egalitarian welfare in a lexicographic
sense, i.e., 0(A) >, 6(A’) for any other allocation A’.



3 Matroid rank valuations

For technical details on matroids and matroid rank functions,
the interested reader is referred to Oxley [2011]; here, we pro-
vide an alternative definition in terms of axioms that are easy
to understand and more relevant to our allocation problem.
Given a valuation function v; : 2° — R, we define the
marginal gain of an item 0 € O w.rt. abundle S C O,
as A;(S;0) = v;(S U {o}) — v;(S). A function v; is sub-
modular if single items contribute more to smaller sets than
to larger ones, i.e. forall S CT C Oandallo € O\ T,
A;(S;0) > A;(T;0). We say that v; has binary marginal
gains if A;(S;0) € {0,1} forall S C Oando € O\ S.
A matroid rank valuation can be defined as a monotone, sub-
modular valuation function with binary marginal gains.

One important subclass of submodular valuations is the class
of assignment valuations, also called OXS valuations [Shap-
ley, 1958; Lehmann et al., 2006; Leme, 2017]. Here, each
agent h € N represents a group of individuals N, (such as
ethnic groups and genders); each individual ¢ € N (also
called a member) has a fixed non-negative weight w; , for
each item 0. An agent h values a bundle S via a match-
ing of the items to its members (i.e. each item is as-
signed to at most one member and vice versa) that maxi-
mizes the sum of weights [Munkres, 1957]; namely, vy, (S) =
max{ ) ey, Uinx() | ™ € II(Ny,S)}, where II(Ny, S) is
the set of matchings 7 : N — S in the complete bipartite
graph with bipartition (N, S). If u;, € {0,1} for every
i € N and o € O, we call the corresponding subclass of OXS
valuations (0, 1)-OXS or assignment valuations with binary
marginal gains. Fair allocation under such valuations was ex-
plored by Benabbou er al. [2019]; these functions form a sub-
class of matroid rank valuations and, in turn, subsume binary
additive valuations [Barman et al., 2018b].

3.1 Utilitarian optimal and EF1 allocation

Our first main contribution is to show that the existence of a
PO+EF1 allocation [Caragiannis et al., 2016] extends to the
class of matroid rank valuations. In fact, we provide a surpris-
ingly strong relation between efficiency and fairness: utilitar-
ian optimality (stronger than Pareto optimality) and EF1 turn
out to be compatible under matroid rank valuations. More-
over, such an allocation can be computed in polynomial time!

Theorem 3.1. For matroid rank valuations, a utilitarian op-
timal allocation that is also EF1 exists and can be computed
in polynomial time.

Our result is constructive: we provide a way of computing the
above allocation in Algorithm 1. The proof of Theorem 3.1
utilizes Lemmas 3.2 and 3.3 which shed light on the interest-
ing interaction between envy and matroid rank valuations.

Lemma 3.2 (Transferability property). For monotone sub-
modular valuation functions, if agent i envies agent j under
an allocation A, then there is an item o € A; for which i has
a positive marginal gain.

Note that Lemma 3.2 holds for submodular functions with ar-
bitrary real-valued marginal gains, and is trivially true for ad-
ditive valuations. However, there exist non-submodular val-
uation functions that violate the transferability property, even
when they have binary marginal gains.

It is easy to see that, for matroid rank valuations, v;(.5) takes
values in {0} U [|:S]] for any bundle S (hence v;(S) < |S]) in
general; in particular, S is a clean bundle for agent i € N if
and only if v;(S) = |S|. Using this insight, we can show the
following result which holds when i’s envy towards j cannot
be eliminated by removing one item.

Lemma 3.3. For matroid rank valuations, if agent i envies
agent j up to more than 1 item under an allocation A (i.e.
A; # 0 andvi(A;) < vi(A;\{o})foreveryo € Aj)and j’s
bundle A; is clean, then vj(A;) > v;(A4;) + 2.

The next important result is that, under matroid rank valua-
tions, utilitarian social welfare maximization can be achieved
in polynomial time.

Theorem 3.4. For matroid rank valuations, one can compute
a clean utilitarian optimal allocation in polynomial time.

Roughly speaking, the key proof idea is the following: com-
puting a clean utilitarian optimal allocation reduces to the
problem of finding the largest common independent set of
two matroids — one that is a union matroid representing col-
lections of potentially overlapping clean bundles, one for
each agent, and another that is a partition matroid modeling
the constraint that every item goes to at most one agent or,
equivalently, that no two bundles in an allocation overlap (see
Korte and Vygen [2006] for details); this latter problem (the
matroid intersection problem [Edmonds, 1979]) is known
to be polynomial-time solvable, assuming polynomial-time
value query oracles. We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Algorithm 1 maintains optimal USW as
an invariant and terminates on an EF1 allocation. Specifically,
we first compute a clean allocation that maximizes the utili-
tarian social welfare. The EIT subroutine in the algorithm
iteratively diminishes envy by transferring an item from the
envied bundle to the envious agent; Lemma 3.2 ensures that
there is always an item in the envied bundle for which the
envious agent has a positive marginal gain.

Algorithm 1: Algorithm for finding utilitarian optimal

EF1 allocation

1 Compute a clean, utilitarian optimal allocation A.

2 /*Envy-Induced Transfers (EIT)*/

3 while there are two agents i, j such that i envies j more
than 1 item. do

4 Find item o € A; with A;(4;;0) = 1.

5 AJ‘ (—AJ\{O},Az (—AiU{O}.

¢ end

Correctness: Each EIT step maintains the optimal utilitar-
ian social welfare as well as cleanness: an envied agent’s
valuation diminishes exactly by 1 while that of the envious
agent increases by exactly 1. Thus, if it terminates, the EIT
subroutine retains the initial (optimal) USW and, by the stop-
ping criterion, induces the EF1 property. To show that the
algorithm terminates in polynomial time, we define the po-
tential function ®(A) £ . .\ vi(4;)%. At each step of
the algorithm, ®(A) strictly decreases by 2 or a larger in-
teger. To see this, let A’ denote the resulting allocation after



reallocation of item o from agent j to i. Since A is clean,
we have v;(A]) = v;i(A4;) + 1 and v;(A}) = v;(4;) — 1;
since all other bundles are untouched, vg(A},) = v (Ay) for
every k € N\ {i,j}. Also, since ¢ envies j up to more
than one item under allocation A, v;(4;) + 2 < v;(4,)
by Lemma 3.3. Combining these, simple algebra gives us
P(A) —P(A) < —2.

Complexity: By Theorem 3.4, computing a clean utilitarian
optimal allocation can be done in polynomial time. The value
of the non-negative potential function has a polynomial upper
bound: Y=,y vi(4i)? < (X,cn vi(As))? < m?. Thus, the
EIT subroutine terminates in polynomial time. U

Despite its simplicity, Algorithm 1 significantly generalizes
Benabbou ef al. [2019]’s PMURR algorithm (which ensures
the existence of a non-wasteful EF1 allocation for (0, 1)-OXS
valuations) to matroid rank valuations. We note that Algo-
rithm 1 may not produce an allocation that is MNW or lex-
imin, even when agents have (0,1)-OXS valuations, but its
above analysis readily gives us the following result.

Corollary 3.5. For matroid rank valuations, any clean allo-
cation A that minimizes ®(A) £ 3",y vi(A;)? among all
utilitarian optimal allocations is EF 1.

3.2 MNW and Leximin Allocations

We saw in Section 3.1 that under matroid rank valuations, a
simple iterative procedure allows us to reach an EF1 alloca-
tion while preserving utilitarian optimality. However, as we
previously noted, such allocations are not necessarily leximin
or MNW. In this subsection, we characterize the set of lex-
imin and MNW allocations under matroid rank valuations.
We start by showing that Pareto optimal allocations coincide
with utilitarian optimal allocations when agents have matroid
rank valuations. Intuitively, if an allocation is not utilitarian
optimal, one can always find an ‘augmenting’ path that makes
at least one agent happier but no other agent worse off (the
actual proof involves more subtle arguments in terms of the
properties of circuits of matroids [Korte and Vygen, 2006]).

Theorem 3.6. For matroid rank valuations, Pareto Optimal
allocations are utilitarian optimal.

Theorem 3.6 shows that every PO allocation is also utilitarian
optimal; since leximin and MNW allocations are Pareto op-
timal [Caragiannis et al., 2016; Bouveret et al., 2016], they
are utilitarian optimal as well. Next, we show that for the
class of matroid rank valuations, leximin and MNW alloca-
tions are identical to each other; further, they can be char-
acterized as the minimizers of any symmetric strictly convex
function among all utilitarian optimal allocations.

A function ® : Z" — R is symmetric if for any
permutation [n] — [n], ®(z1,22,...,2,) =
@ (2r(1), Zr(2)s - - - » Zr(n))> and is strictly convex if for any
x,y € Z" withx # y and A € (0,1) where Az + (1 — Ny
is an integral vector, A®(xz) + (1 — N\)®(y) > ®(\x +

(I — X)y). Examples of symmetric, strictly convex func-
tions include: ® (21, 22,...,2,) = > 1, 22 forz; € Z Vi
(21,22, ,20) = Yoy ziInz; for 2; € Zsg Vi.

Theorem 3.7. Let ® : Z™ — R be a symmetric strictly con-
vex function; let A be some allocation. For matroid rank val-
uations, the following are equivalent:

1. A is a minimizer of ® over all the utilitarian optimal
allocations; and

2. Ais a leximin allocation; and
3. A maximizes Nash welfare.

Combining the above characterization with the Corollary 3.5,
we get the following fairness-efficiency guarantee for matroid
rank valuations, reminiscent of the result of Caragiannis ef al.
[2016] on MNW allocations for additive valuations.

Corollary 3.8. For matroid rank valuations, any clean lex-
imin or MNW allocation is EF1.

4 Assignment valuations with binary gains

We now consider the special but practically important (0, 1)-
OXS subclass. For this class, we show that invoking Theorem
3.6, one can find a leximin or MNW allocation in polynomial
time. The trick is to construct a flow network such that com-
puting a leximin allocation in the original instance reduces
to finding a increasingly-maximal integer-valued flow on the
induced network; Frank and Murota [2019] recently gave a
polynomial-time algorithm for this flow problem. We note
that the complexity of the leximin allocation problem is open
for the more general class of matroid rank valuations.

Theorem 4.1. For assignment valuations with binary
marginal gains, one can find a leximin or MNW allocation
in polynomial time.

5 Discussion

We studied allocations of indivisible goods under matroid
rank valuations in terms of the interplay among envy, effi-
ciency, and various welfare concepts. The class of matroid
rank functions is rather broad, and our results can be immedi-
ately applied to settings where agents’ valuations are induced
by a matroid structure, even beyond the domains described in
this work. For example, partition matroids model instances
where agents’ have access to different item types, but can
only hold a limited number of each type (their utility is the
total number of items they hold); a variety of other domains,
such as spanning trees, independent sets of vectors, cover-
age problems and more admit a matroid structure. Indeed,
a well-known result in combinatorial optimization states that
any agent valuation structure where the greedy algorithm can
be used to find the (weighted) optimal bundle, is induced by
some matroid [Oxley, 2011, Theorem 1.8.5]. There are sev-
eral known extensions to matroid structures, with deep con-
nections to submodular optimization [Oxley, 2011, Chapter
11]. We focused here on submodular functions with binary
marginal gains; however, general submodular functions ad-
mit some matroid structure which may potentially be used to
extend our results to more general settings. Finally, it would
be interesting to explore other fairness criteria such as pro-
portionality, the maximin share guarantee, equitability. etc.
(see, e.g. [Bouveret er al., 2016] and references therein) for
matroid rank valuations.
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