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Abstract

Monitoring the effectiveness of policy interven-
tions that promote sustainable farming practices
has always been a costly affair. It requires an ex-
tensive ground presence which is not always avail-
able or reliable. In this paper we present our work
so far in the application of deep learning techniques
to automate the identification of individual parcels
(farms). Our study area is located in the central
state of Madhya Pradesh in India, where the av-
erage landholding size is around 0.6 hectares per
farmer. We created a methodology that uses CNN
models for segmentation and Canny Edge detector
for generating contours. Our future work concen-
trates on improving the quality of the reference data
and applying additional post-processing methods.
Overall, we demonstrate how deep learning could
be used for providing specific agronomic advice to
individual farmers across large areas and the moni-
toring thereof, something which is essential in mit-
igating the effects of climate change.

1 Introduction
Considering the majority of the global food production (es-
timated to be 70 percent) is done by small holder farmers,
even a small change in farming practices can have a signifi-
cant impact on sustainability parameters. There is a definite
surge in the number of initiatives both by local and global or-
ganizations to advice and improve key aspects such as soil
health and efficient water-usage. Measuring the results of
these initiatives at an individual farmer (or parcel) level is a
cumbersome process and involves ground truthing by human
operators. This is where insights from remote sensing can
provide much-needed scale in terms of time and cost. Digi-
tal cadastral maps provide an essential piece of infrastructure
that facilitate remote sensing-based monitoring at a parcel-
level. However, formal cadastral maps cover only one third
of all the parcels in the world [Nyandwi et al., 2019]. The un-
covered areas are typically found in low and middle-income
countries which also happen to have the highest proportion
of small holder farmers. According to [Ministry of Agricul-
ture GoI, 2019] the small and marginal land holdings in India

Figure 1: Study Area of Interest - Shajapur, Madhya Pradesh, India

(less than 2.00 hectares in area) constituted 86.21% of the to-
tal agricultural land holdings in 2015–16. In this paper we
present the progress we have made in applying deep learn-
ing techniques for parcel-identification in an Indian context.
These techniques can be used to automate the process of cre-
ating and maintaining cadastral maps, which will ultimately
enable the monitoring of sustainable farming practices at a
parcel level.

2 Related Work
Image processing approaches that combine edge detection
and morphological operations have been the norm for iden-
tifying parcels, [Usman and Beiji, 2012] provides such an ap-
proach. In recent years however, there has been a steady rise
in deep learning based research and applications in remote
sensing. [Zhang et al., 2016] provides an overview of deep
learning approaches and a general framework for it. The ap-
proaches can be grouped into two general categories [Zhang
et al., 2016], Pixel based approach (PBA) and Object based
approaches (OBA). Our approach would belong to PBA along
with the use of Convolution Neural Network (CNN). The ma-
jority of the work so far has been concentrated in areas which



Figure 2: Workflow of the methodology

have predominantly large parcels and using very high reso-
lution (VHR) satellite imagery [Garcı́a-Pedrero et al., 2017]
[Garcia-Pedrero et al., 2019] [Rieke, 2017] [Xia et al., 2019]
[Masoud et al., 2020] [Persello et al., 2019]. Usage of VHR
imagery becomes a limitation when applied to a country like
India due to its associated costs while scaling the approach.
Besides satellite imagery costs, the parcels tend to be non-
uniform geometric shapes (as opposed to uniformly shaped
parcels in high income countries). This paper differs from
previous work in its usage of relatively lower resolution im-
agery and smaller parcels.

3 Study area and Data description
Our study is set in the district of Shajapur in the central state
of Madhya Pradesh (MP) in India. MP is one of the major
agricultural (producer) states in India. Its major crops include
Soybean, Wheat and Gram. The district of Shajapur was se-
lected due to the availability of the cadastral map for this re-
search and the large number of small parcels located within
it. The cadastral map was available in an ESRI shapefile for-
mat. There are around 0.55 million parcels in the district with
an average size of 0.6 hectares. The study area is shown in
Figure 1. Satellite images from the LISS-4 camera sensor
of ISRO’s ResourceSat-2 program were used for this study.
It has a spatial resolution of 5.8 m with three spectral bands
Red, Green, and Near-Infrared. The spatial coverage of the
data matches the entire district of Shajapur.

4 Methodology
The methodology consists of two main parts.

1. Segmentation

2. Prediction and Post-Processing

The first part involves creating a training data set and build-
ing a segmentation model. The LISS-4 image was clipped
into patches of 256x256 pixels. The reference data was cre-
ated by transforming the cadastral map into a binary mask.
Each training data instance is thus represented by a pair of
LISS-4 patch and the corresponding binary mask. The model
training is further detailed in Section 4.1. In the second part,
we generate the parcels using the trained segmentation model
and apply post-processing steps. The predictions were gen-
erated in the form of a segmentation map. The output is a
continuous [0,1] value in each pixel. The post-processing in-
volves finding the edges and vectorizing the edge map to get
individual parcels. The overall workflow of the methodology
is shown in Figure 2.

4.1 Segmentation
Our proposed model is inspired from U-Net [Ronneberger
et al., 2015]. U-Net is an FCNN model originally devel-
oped for medical image segmentation and has an encoder-
decoder based architecture. Few adaptions were made in the
network: (1) The encoder part was replaced with resnet-34
[He et al., 2015] architecture by extracting the same number
of layers from the resnet-34 as the number of encoder layers
in the model. (2) The encoder weights were initialized us-
ing the pretrained weights from ImageNet dataset [Deng et
al., 2009]. The network was trained in following settings: (i)
Adam optimizer [Kingma and Ba, 2014] with a learning rate
of 1e-4. (ii) Binary cross entropy as an objective function.



(iii) No. of epochs = 12 and batch size = 16.

Figure 3: L To R: Predicted Mask, Extracted parcels

Figure 4: Manually annotated parcels

4.2 Prediction and Post-Processing
While U-Net learns to identify strictly parcels, it does not
necessarily generate closed boundaries, which is required to
extract individual parcels. In order to obtain the agricultural
parcels (in vector data), the following post-processing strat-
egy is followed. The predicted mask shown in Figure 3 was
firstly imported back (raster data) in Google Earth Engine
(GEE). A Gaussian blur filter followed by the Canny Edge
Detector [Canny, 1986] was applied to generate the contours.
These contours represent individual parcels. In the vectoriza-
tion process, we set the same resolution as LISS-4. Finally,
we used GEE built-in reduceToVectors [Gorelick et al., 2017]
functionality which creates polygons at the boundary of ho-
mogeneous groups of connected pixels as shown in Figure 3.

5 Accuracy Assessment
The accuracy assessment was done at a parcel level. Manu-
ally annotated parcels were used as reference data for testing
as these were more accurate than the cadastral map data. 500
digitised parcels were used as the reference data as shown in
Figure 4. The digitised parcels were drawn on Google Earth
Engine (GEE) at a 1m resolution. Dice coefficient was used

as the metric for evaluation. It is a metric to quantify the per-
centage overlap between the target mask and our prediction
output. It has been widely used to assess image segmenta-
tion tasks [Zou et al., 2004] [Zhang et al., 2019]. The Dice
coefficient is defined as

Dice =
2TP

2TP + FP + FN
(1)

where TP = True Positive, FP = False Positive and FN =
False Negative. The reference data and the final output was
rasterized back from its original vector format to calculate the
dice coefficient.

Dice Score

Plot-1 0.754
Plot-2 0.313
Plot-3 0.311
Plot-4 0.398
Plot-5 0.413
Plot-6 0.43
Plot-7 0.612
Plot-8 0.33
Plot-9 0.21
Plot-10 0.22

Table 1: Sample Plot level results in terms of Dice score

Mean Median SD

0.37 0.377 0.132

Table 2: Aggregated Dice Score of all the parcels

6 Results
Table 1 and 2 shows the dice coefficient scores (predicted
parcels compared to reference data) for a random set of ten
parcels and aggregated statistics for all the predictions respec-
tively. The results show that 68% of the predictions had a
dice score within the range of 0.25-0.50. While 16% fall in
0.5-0.75 range. Figure 5 shows output of predicted parcels
overlaid on top of the reference parcels. Figure 6 provides
an overview of the predictions for a set of parcels. A certain
level of under-segmentation can be observed from the results.
The predicted parcels are seen to contain multiple reference
parcels within them. We elaborate on these points in the dis-
cussion section.

7 Discussion
The under-segmentation of the predicted parcels was ex-
pected and can be attributed to factors mentioned earlier such
as non-uniform geometries and small size of the parcels.
The predictions exhibited dangling features in the boundaries,
similar results were observed during the study by [Nyandwi et
al., 2019]. A major limitation was the precision of the cadas-
tral map which was used to create the segmentation model



Figure 5: Actual parcels(in red) overlayed with the predicted parcels(in white).

Figure 6: Sample Prediction

during the first part of our methodology. Incorrect or obso-
lete demarcation of the boundaries led to the inferior quality
of the training data. The low dice scores were thus a result
of the mismatch between the quality of the training data and
that of the manually annotated reference data used for testing.
Given this background, we feel that the number of parcels
with a dice score above 0.75 can be considerably increased
by using better quality training data and applying additional
post-processing methods.

8 Future work
Our future work will be concentrated in two areas: Improv-
ing the training set (quality and quantity) and exploring ad-
ditional post-processing methods. We shall replace the ex-
isting cadastral map as reference data by manually annotated
parcels. This will improve the quality aspect of the training
set. There is no benchmark for what constitutes an ideal num-
ber of parcels for the training set [Zhang et al., 2016]. We aim
to have atleast 5000 parcels.

As far as post-processing step is concerned we shall be
exploring atleast four new methods. The first method is
based on gPb [Arbeláez et al., 2011] contour detector which
combines colour and texture information of an image as op-
posed to our current method which only uses the gradient

of an image. The second method utilizes Structured edge
detector(SE) [Dollár and Zitnick, 2013] which represents a
supervised learning approach for edge detection. Finally,
we will be experimenting with active contours [Kass et al.,
1988]. Active contour models(or “snakes” algorithm) are
widely used for systematically refining object contours. Ac-
tive contours have been earlier applied to (radar) satellite im-
ages [Horritt et al., 2001] to delineate flood damage extent.

9 Conclusion
Our ongoing work demonstrates how remote sensing can be
used to automate the identification of individual parcels. It
has the potential to provide a cost-effective way of creating
and maintaining cadastral maps for large areas such as en-
tire districts or states. It provides policy makers and change-
agents with a powerful tool to monitor and assess the effec-
tiveness of sustainable farming practices without being de-
pendent on ground presence. It also opens up the possibility
of providing agronomic advice to individual farmers based on
insights (soil moisture, vegetation health, pest or disease at-
tack). Overall, it shows deep learning can be used to speed
up much needed (digital) infrastructural projects for largely
agrarian low to middle-income countries.
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