Corporate Social Responsibility via Multi-Armed Bandits

Tom Ron*', Omer Ben-Porat*!, Uri Shalit'

'Technion - Israel Institute of Technology

{ront, omerbp}@campus.technion.ac.il, urishalit@technion.ac.il

Abstract

We propose a multi-armed bandit setting where
each arm corresponds to a subpopulation, and
pulling an arm is equivalent to granting an op-
portunity to this subpopulation. In this set-
ting the decision-maker’s fairness policy governs
the number of opportunities each subpopulation
should receive, which typically depends on the (un-
known) reward from granting an opportunity to
this subpopulation. The decision-maker can decide
whether to provide these opportunities or pay a pre-
defined monetary value for every withheld oppor-
tunity. The decision-maker’s objective is to max-
imize her utility, which is the sum of rewards mi-
nus the cost of withheld opportunities. We provide
a no-regret algorithm that maximizes the decision-
maker’s utility and complement our analysis with
an almost-tight lower bound. Full version of the
paper is available at https://tinyurl.com/y7s9avud.

1 Introduction

Algorithmic decision making plays a fundamental role in
many facets of our lives; criminal justice [Berk, 2012, Berk
et al., 2019, Northpointe, 2015], banking [Usi, Fuster et al.,
2018, Pérez-Martin et al., 2018, Zhang et al., 2015], online-
advertisement [McMahan et al., 2013, Oentaryo et al., 2014],
hiring [Ama, How, Abel, 2015, Ajunwa and Greene, 2019] ,
and college admission [Acharya and Sinha, 2014, Lux et al.,
2016, Waters and Miikkulainen, 2014] are just a few exam-
ples. With the abundance of applications in which algorithms
operate, concerns about their ethics, fairness, and privacy
have emerged. For instance, classification algorithms that
were deemed to be unfair and discriminate based on factors
like gender, race, and more [Dwork et al., 2012, Hardt et al.,
2016, Zafar et al., 2015, Zhao et al., 2017]. Algorithmic fair-
ness is a framework that, among other means, is aimed at
ensuring the long-term welfare of such subpopulations when
subject to algorithmic decision making.

Consider the following online advertisement use-case. A
company wants to publish a job ad online and optimizes its
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campaign based on the cost-per-click. As witnessed by Lam-
brecht and Tucker [2018], women are less likely to see job
ads for STEM positions since they have higher cost-per-click
than men. If women are not exposed to information about
STEM career opportunities, they may never apply to such
jobs [Diekman et al., 2010]. In order to act fairly and dis-
play ads to all the subpopulations the company will need to
sacrifice part of its short-term utility and pay a higher cost-
per-click. Our goal in this paper is to better understand the
trade-off that companies who wish to ensure their algorithms
are more equitable face.

We focus on exploring the cost of fairness versus the cost
of alternatives such as Corporate Social Responsibility [Car-
roll et al., 1991] (CSR hereinafter). CSR is an approach to-
wards the goal of long-term welfare which is becoming in-
creasingly popular among tech-giants these days. CSR is a
self-regulation act of philanthropic responsibility in response
to the rising concerns on ethical issues in businesses. For ex-
ample, in 2019, Microsoft spent more than three billion dol-
lars with minority, disabled, veteran, LGBTQ, and woman-
owned businesses'.

In this paper, we suggest an algorithmic approach to CSR
in the setting of sequential decision making. Sequential de-
cision making is often modeled as Multi-armed bandit prob-
lems (hereinafter MAB; see Auer et al. [2002] for a brief in-
troduction). MABs enjoy massive commercial success and
have myriad real-world applications [Chow and Chang, 2008,
Fu, 2016, White, 2012, Zeng et al., 2016]. It is therefore un-
surprising that fair aspects of MAB are examined. In this
work we treat arms as subpopulations, and require that sub-
populations would not starve from lack of opportunities. Op-
portunities can be granted to a subpopulations explicitly, i.e.,
by pulling the subpopulation’s arm, or implicitly via CSR
channels. Given the example above, companies have the
choice whether to display ads to subpopulations with higher
cost-per-click or to invest money in organizations that pro-
mote the long term well-being of those subpopulations.

We highlight the tension between the decision-maker that
wants to maximize her reward and the cost of CSR. We con-
sider the bandit reward to be the benefit derived from granting
the opportunity to the subpopulation represented by the arm.
For simplicity we use the term expected reward from here
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on. The amount of opportunities depends on how fairness is
perceived by the decision-maker and the expected rewards.
Unfortunately, information about the expected rewards is not
known in advance and has to be explored by the decision-
maker. We take a utilitarian approach: The utility of the
decision-maker is composed of the rewards, clicks on dis-
played ads, and a transfer cost. The transfer cost is the amount
the decision-maker invests in CSR for every deferred oppor-
tunity. Knowing the transfer cost in advance, the decision-
maker can make an informed decision on how to allocate its
resources. Our model casts light on the trade-off between the
cost of opportunity and the cost of transferring the opportu-
nity requirement to an external source.

1.1 Our Contribution

Our contribution is two-fold: technical and conceptual.
Technically, we consider the typical MAB setting with K
Bernoulli arms with horizon 7' and expectation vector pu,
which is unknown. In addition, we introduce a fairness func-
tion f, f : [0,1]% — [0,1]%, which determines the minimal
number of pulls for each arm given the expected reward vec-
tor pu. The term 7' - f(w); quantifies the amount of oppor-
tunities subpopulation ¢ deserves, which is a function of its
own expected reward and the expected rewards of the other
subpopulations. The decision-maker gains rewards, but pays
a transfer cost of A for every round of unmet opportunity. We
assume that both f and A are known in advance. We charac-
terize the optimal algorithm that achieves a sub-linear regret
of O(T*?), and show a matching lower bound. In the ap-
pendix, we augment our theoretical analysis with experimen-
tal, examining the implications of different fairness functions
f and values of \.

On the conceptual side, our framework reflects the trade-
off between monetary rewards and subpopulation opportu-
nities, which can be viewed as a means of providing long-
term welfare. This perspective follows, e.g., self-regulation in
revenue-driven commercial companies (as decision-makers)
contributing to societal goals, or a policy maker that ensures
that the decision-maker is fairness aware. In the former, suf-
ficient opportunities are a CSR [Garriga and Melé, 2004] that
is integrated in the company’s objective by design. In the lat-
ter, the decision-maker provides opportunities explicitly by
arm pulls, or implicitly by payments that are invested in that
subpopulation by the policy maker (for, e.g., better computer
labs in public schools). Crucially, the number of required op-
portunities depends on the expected rewards, known only in
hindsight.

1.2 Related Work

Multi-armed bandit has been a fertile ground for many
fairness-related application [Joseph et al., 2016a,b, Liu et al.,
2017, Patil et al., 2019]. Joseph et al. [2016a,b] study fairness
in MABs from the eyes of the decision-maker. We study fair-
ness from the perspective of the arms and view arm pulling
as granting an opportunity. This view was also adopted by
Liu et al. [2017]. The work most related to ours is Patil et al.
[2019]. The authors define fairness as pulling each arm at
least a minimal number of times according to a predefined
vector (where each entry corresponds to a subpopulation).

The predefined vector is given by the policy maker and is
independent of the subpopulation properties. However, our
work differs from Patil et al. [2019] in two crucial aspects.
First, while Patil et al. [2019] model fairness as a hard con-
straint, we better address real-world applications and treat it
as a soft one. Our utilitarian approach, which is well-studied
in economic contexts [Mas-Colell et al., 1995, Varian and
Varian, 1992], accounts for trading rewards with opportuni-
ties. If providing opportunities explicitly by pulling the arms
is financially unbearable, the decision-maker can do that im-
plicitly by monetary transfers. Second, Patil et al. [2019]
construct the fairness constraint by a predefined vector, while
in our work the opportunity requirements depend on the ex-
pected rewards, which is only known in hindsight. This un-
certainty exacerbate the problem even further . These differ-
ences and others lead to a lower bound of O(T*/*) compared

to a O(v/T) in theirs.

2 Model
We consider a stochastic bandit problem; a decision-maker is
given K arms, and pulls one at each time stept = 1,2,...,T.

We denote by i; the arm pulled at time ¢. When arm ¢ is
pulled at time ¢, the decision-maker receives a random re-
ward, 7 ~ D;. We assume that for every i € [K], the reward
distribution D; is a Bernoulli distribution with expected value
;. This is without loss of generality, since we can reduce
any instance with general [0, 1]-supported distribution to an
instance with Bernoulli arms using the technique of Agrawal
and Goyal [2012]. We use p to denote the vector of expected
rewards, i.e., o = (1, ..., i ). We denote by N; , the num-
ber of times arm ¢ is pulled by the end of round ¢, and let
A; = p* — p; be the gap between the expected reward of the
optimal arm and the expected reward of arm 3.

We now present the Reward-Opportunity MAB (R-O
MAB) model. An instance of R-O MAB is represented by
atuple (K, T, u, f, \). The tuple (K, T, pt) is an instance of
standard stochastic bandit as described above. The combina-
tion of f and A creates what we call the “fairness policy”.

The fairness requirements are expressed by a function f,
f:[0,1]% — [0,1]%. f receives as input a vector of ex-
pected rewards and outputs a vector of minimal fraction of
times each arm has to be pulled in order not to be penal-
ized. We let f(u); denote the i’th entry of f(u). We as-

sume that Zfil f(w); < 1and that f is Lipschitz continuous
with a Lipschitz constant L with respect to the /; norm. That
is, for all p, ¢/ € [0,1]% it holds that || f(p) — f(p')||, <
L||p — p']|;. Satisfying the Lipschitz condition implies that
two similar expected reward vectors get similar fairness re-
quirements. From here on we call f the fairness function.
The difference between the fairness requirement and the
number of times an arm was pulled, T'f(u); — N, 1, rep-
resents the deviation from the fairness constraint. If the de-
viation is positive, it means the arm was not pulled enough
times, i.e. the subpopulation did not receive enough oppor-
tunities according to the fairness function. In such a case,
the decision-maker pays a cost. The paid cost for a single
arm pull’s deviation from the fairness requirement is given by
i, the transfer cost for arm ¢. If arm ¢ was pulled less than



Tf(p); times, the reward will be deducted by \;(Tf(w); —
NLT). The transfer cost is known to the decision-maker in
advance. To account for all cases, the possible cost which
stems from the deviation is A\; max{Tf(p); — N; r,0}. For
simplicity, we use A; = A for all ¢ € [K], but stress that our
results also hold with minor modifications in the general case.

The utility of the decision-maker is denoted by U/ ;. It is
an additive utility of the reward minus the total deviation from
the fairness requirement. Notice that ¢; and consequently
N; 7 depend on the algorithm playing the arms. Formally,
given an algorithm ALG,

T k
Un f(ALG;T) €3 rs, = XS max{Tf(n): — Nir,0}.

t=1 =1
)]
As is customary in the MAB literature, we focus on the re-
gret of the decision-maker, which we denote Ry ¢(ALG;T).
Let OPT be an algorithm maximizing the utility Uy ;(OPT)
(we discuss OPT in Subsection 2.1). The regret is the gap
between the expected utility of OPT and ALG:

R f(ALG;T) = E(Ux, s (OPT;T)) — E(Ux, s (ALG; T)). (2)

When A and f are arbitrary or clear from the context, we omit
the subscript and simply denote ¢/ and R. Full proofs appear
in the appendix.

2.1 Optimal Algorithm

The structure of the optimal algorithm in classic MABs is
straightforward: In every round, pick the arm with the highest
expectation. However, in our case, the transfer cost makes the
optimal algorithm a bit more complex, as we now elucidate.
Let 7 denote an arbitrary index of a sub-optimal arm, i.e., an
arm such that y; < max; ¢x) pir. The decision-maker has to
decide whether to support the subpopulation associated with
that arm explicitly (by pulling it T'f(w); times) or implicitly
(by paying AT f(ut);). Note that T'f (u); can be non-integer,
in this case, we take the floor of T'f (ut);. In each one of those
T f(p); rounds, the decision-maker loses A; if she pulls arm
1 (as she could pick the optimal arm) but saves A (as she does
not need the pay the transfer cost). Therefore, if the reward
gap of arm ¢ is greater than the transfer cost, A; > A, the
decision-maker does not pull arm ¢ at all and pays the transfer
cost. Otherwise, if A; < ), the decision-maker would have
greater utility by pulling arm 4 exactly T'f(ut); times and not
incurring the transfer cost. If A; = ), the decision-maker is
indifferent between the two options. More formally,

Lemma 1. Fix an arbitrary instance (K, T, u, f,\) and let
OPT be an optimal algorithm for that instance. For every
sub-optimal arm i, if A; < X then OPT pulls i exactly
Tf(p); times; if A; > N\, OPT does not pull i at all. If
A; = )\ OPT pulls arm i between zero and T f (), times.

2.2 About the Fairness Policy

The fairness policy is comprised of the fairness function f
and the transfer cost A\. f represents the decision-maker’s
view on how opportunities should be distributed. E.g., the

zero function fO(u); L) corresponds to standard Multi-

Armed bandit problem without any constraints. Generaliz-

. . . » def
ing this case for any constant function, e.g., f*(u); = %,

alludes that the decision-maker believes that all subpopula-
tions are entitled to the same share of opportunities irrespec-
tive of their expected rewards. f can also grow linearly with

. - def
each expected reward, for instance fi"(u); = 4. In the
most general case, the number of required opportunities to
a subpopulation can also depend on its expected reward rel-

ative to the expected rewards of other subpopulations, .e.g.,

cpy

. def
fhft(li;c)i = Zf:’%

TR Our modelling supports these
special cases and many other natural candidates for the fair-
ness function. Selecting A complements the decision-maker’s
view on revenue and opportunities. As described in Section
2.1, if the transfer cost is high the decision-maker will tend
to grant the opportunities explicitly, and would not grant op-
portunities explicitly only when the subpopulations’ expected
rewards have big differences and vice versa if the transfer cost
is low. X can vary between different subpopulations, for sim-
plicity is assumed equal.

3 No-Regret Algorithms

In this section, we present our main algorithmic contribution.
We devise Self-regulated Utility Maximization, which incurs
aregret of O(TZ/ %). Before we discuss it, we first demonstrate
that classical MAB algorithms fail miserably on our setting.
This is expected given that such algorithms were not devised
for a setting like ours, but it will serve us later on. Classical
MAB algorithms are tuned to pull sub-optimal arms as little
as possible. As shown in Subsection 2.1, it is not always op-
timal for R-O MAB. If the cost of opportunity (4;) is lower
than the transfer cost (\), the optimal algorithm pulls arm ¢
according to the fairness function.

In R-O MAB, we face a unique challenge comparing to
the classic MAB problem. Classical MAB algorithms are
aimed at identifying the optimal arm but do not estimate
the expected rewards . The optimal algorithm depends on
the relation between the reward gaps and the transfer cost;
hence, unlike classic MAB, accurate approximation of the re-
ward gaps (A;);c(k is crucial for our problem. Addition-
ally, f(p) should also be approximated correctly for arms i
with A; < ), to align with the optimal algorithm. These two
challenges are singular to our settings and are reflected in the
lower bound.

Algorithm 1, which we term Fairness-Aware-ETC, is a
modified version of Explore-Then-Commit (ETC). ETC ex-
plores all arms for a predetermined number of rounds (IN),
and then follows the best preforming arm for the remaining
rounds. Similarly, Fairness-Aware-ETC pulls each arm N
times and then constructs estimates for g and f(u), which
we denote using the hat notation, i.e., & and f(f). It then
continues optimally with respect to these estimates (accord-
ing to the optimal algorithm for the estimated quantities).

Theorem 1. Fix any arbitrary instance of R-O MAB, and
let N = 8L*/3T°/3 logl/3 T. Algorithm 1 has a regret of
O(KL*T**10g* T).

Algorithm 1 is almost data independent. The predefined

exploration length N prevents the algorithm from stopping
the exploration early. Early stopping is important after iden-



Algorithm 1 Fairness-Aware-ETC

Algorithm 2 Self-regulated Utility Maximization

Input: N - # exploration rounds
1: fort=1,... K do
pull arm 7 for N rounds
end for
cfori=1,...K do
if A; < ) then
pull arm ¢ for max{T f(f1); — N, 0} rounds
end if
end for
: pull an arbitrary arm from arg max; ¢ fi; until the exe-
cution ends

VRN AW

tifying arms with high opportunity cost or arms that already
satisfy the fairness requirements.

3.1 Fairness Aware Black-Box algorithm

In this section, we present a data dependent algorithm ad-
dressing the problems of Algorithm 1 by incorporating early
stopping. We now explain the course of Algorithm 2. Full
version of the algorithm appears in the appendix. The algo-
rithm takes v and (3, which we describe shortly, and ALG,
a black-box no-regret MAB algorithm as input, where ALG
is no-regret with respect to the classical, rewards-only MAB
objective (e.g. UCBI [Slivkins, 2019]).

In Lines 1- 3 confidence bounds representing the probable
estimates of the reward gaps, i.e. LCB(A;) and UCB(A;)
and C} which is the hyper-cube of probable estimates of g
are initialized. Lines 5-13 consist of four different phases. In
the first phase (Lines 4-5), the reward gaps are approximated.
After this phase, the algorithm knows w.h.p. for each arm
whether its reward gap is higher or lower than the transfer
cost by more than 8. The second phase (Lines 7-8), approx-
imates f for arms with low opportunity cost up to a factor
of .. If there is an arm with low opportunity cost for which
the approximation of f is not accurate enough, all the arms
are pulled. The term max,/cc, f(p'); — mingrcco, f(p')i
upper bounds estimation error of f(f1); inside the hyper-cube
Cy. Pulling all arms ensures that all the estimates improve for
the subsequent round, namely, C} shrinks in all of its dimen-
sions. In the third phase (Lines 10-11), we ensure that we pull
all arms with low opportunity cost according to the estimate
of f(ft);. In the fourth step (Line 13), ALG is invoked until
the end of the execution.

Next, we discuss the input hyper-parameters, «, 5 and
ALG. « is the confidence interval hyper-parameter for the
approximation of f. Setting a too small values implies that
arms should be pulled many times and this can inflict a re-
gret due to over pulling arms. The approximation error of f
can be as big as T« is. The hyper-parameter £ is the confi-
dence interval for the approximation of the reward gaps. If
the reward gap is not close to the transfer cost J, it would be
identified almost immediately. Otherwise, Algorithm 2 uses
the black-box MAB algorithm ALG. In the fourth step, the
decision-maker identifies the best arm and exploits its reward.

The only computationally non-trivial step in Algo-
rithm 2 appears in Line 7: Computing max,,/cc, f(p')i —

Input: Black-box bandit algorithm ALG, allowed approxi-
mation error parameters « and 3

N; =0,LCB(A;) =0,UCB(A;) =1foralli € [K]
t=1

C, = [Oa 1]K

while 3¢ € [K]stUCB(A;) > A+ Band LCB(A;) <
A — [ do// phase 1

L e

5: Play all arms once, update ¢, counters and estimators

6: end while

7: while 3i € [K]s.t. max,/cc, f(u')i —min, o, f(p') >
aand LCB(A;) < A do // phase 2

8:  Play all arms once, update ¢, counters and estimators

9: end while

10: while t < T'and 3 € [K]stLCB(A;) < Aand N; <
Tmin,cc, f(u'): do// phase 3
11:  Play arm 4 the minimal number of times so N; > T f(f1)s,
update ¢
12: end while
13: Invoke ALG for the remaining rounds // phase 4

min,scc, f(p');. Finding the global maximum of a Lips-
chitz function inside a hyper-cube is a computationally chal-
lenging task. However, due to role f plays in our setting, we
argue that it should have a natural structure. Indeed, f quan-
tifies a societal requirement and as such should be easy to
grasp: Providing opportunities according to a cumbersome,
hard-to-optimize and unexplainable criteria is likely to be un-
fair in and of itself. Consequentially, we shall assume that
there is an oracle that computes the minimal and maximal
values f at entry ¢ can obtain in a given hyper-cube.
We are ready to state the guarantees of Algorithm 2.

Theorem 2. Fix any arbitrary instance of R-O MAB, and let
o = KPPLBT0g* T, B = T=*1og* T. Then, Al-
gorithm 2 has a regret of O(K"/* L*/*T** 1og"* T).

4 Lower Bound

In the previous section, we presented Algorithm 2, which in-
curs a regret of O (TQ/ 3) in the worst case. Here we show that
this bound is asymptotically optimal by designing a family of
R-O MAB instances that can mislead any algorithm.

Theorem 3. Fix time horizon T, number of arms K, and
Lipschitz constant L. For any algorithm, there exists a R-O
MAB instance such that R(T) > Q(T*).

5 Conclusion

We introduced a MAB problem that models decision mak-
ing from the perspective of Corporate Social Responsibility
and allocation of opportunities. Our modeling imitates many
real-world scenarios where decision-makers are required to
maximize their short-term utility while at the same time up-
holding fairness principles. With our framework, commercial
companies can incorporate self-regulation in their algorith-
mic products, and provide opportunities as a form of social
responsibility. We devised a no-regret algorithm and showed
that its convergence rate is in fact optimal.
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