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Abstract
Research shows that providing an appliance-wise
energy breakdown can help users save up to 15%
of their energy bills. Non-intrusive load monitor-
ing (NILM) or energy disaggregation is the task of
estimating the household energy measured at the
aggregate level for each constituent appliances in
the household. The problem was first was intro-
duced in the 1980s by Hart. Over the past three
decades, NILM has been an extensively researched
topic by researchers. NILMTK was introduced in
2014 to the NILM community in order to motivate
reproducible research. Even after the introduction
of the NILMTK toolkit to the community, there has
been a little contribution of recent state-of-the-art
algorithms back to the toolkit. In this paper, we
propose a new disaggregation API, which further
simplifies the process for the rapid comparison of
different state-of-the-art algorithms across a wide
range of datasets and algorithms. We also propose
a new rewrite for writing the new disaggregation al-
gorithms for NILMTK, which is similar to Scikit-
learn. We demonstrate the power of the new API
by conducting various complex experiments using
the API.

1 Introduction
Buildings consume roughly one-thirds of the total energy
consumption across the world [Pérez-Lombard et al., 2008].
Prior research shows that providing households with a per-
appliance energy consumption can help them save upto 15%
on their energy bills [Darby and others, 2006]. Non-Intrusive
load monitoring is the task of estimating appliance-wise en-
ergy consumption using aggregate reading. The estimated ap-
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pliance reading can be used by the household for understand-
ing the appliances of their home and can make decisions for
optimizing the household’s power consumption. The prob-
lem was initially studied by George Hart [Hart, 1985] in the
1980s. Recently the problem gained more recognition owing
to the smart meter availability and the environmental impact
of the problem.

Over the past three decades, there has been extensive re-
search on the NILM topic by the research community. Many
of the recent algorithmic developments in NILM were not re-
producible due to the lack of open-source implementations
of them. Researchers were using several baseline algorithms
due to the lack of online implementations of the recent de-
velopments. The metrics and datasets used by the algorithms
were also different, resulting in an uneven comparison of the
algorithms. Due to the above problems, it was hard for a new
researcher to decide which algorithm is the best.

In order to address this problem, NILMTK [Batra et al.,
2014] was proposed in 2014, for motivating the researchers
to use the toolkit for developing the algorithms and using the
toolkit for reproducing the results across a variety of datasets
and metrics. Despite the introduction of the toolkit in 2014,
there has been a little contribution from the NILM community
for adding new algorithms that are supported by NILMTK. In
order to develop an algorithm for the previous NILMTK, the
researcher needed to have an understanding of Meters, Me-
terGroups, Buildings, and Datasets, which are critical objects
in NILMTK. In this paper, we propose a new rewrite of the
NILM algorithms which can be developed by any user using
the knowledge of Pandas. We believe that this step will en-
courage more users to develop new algorithms for the toolkit.

In this paper, we also propose a new Disaggregation API,
which can be used for rapid experimentation by the users
against a benchmark of datasets, algorithms, and metrics that
are provided in NILMTK. Researchers can now develop their
algorithms using the knowledge of Pandas. In this paper, we
demonstrate the power of the API by using three baseline



1 experiment = {
2 ’power’: {’mains’: [’active’], ’appliance’: [’active’]},
3 ’sample_rate’: 60, ’artificial_aggregate’:False,
4 ’appliances’: [’fridge’, ’washing machine’],
5 ’methods’: {’CO’: {},
6 ’FHMM_EXACT’: {’num_of_states’: 2},
7 ’Seq2Point’: {
8 ’n_epochs’: 1,
9 ’pre-processing’: {

10 ’appliance_params’: {
11 ’washing machine’: {
12 ’mean’: 400,’std’: 700},
13 ’fridge’: {
14 ’mean’: 200,’std’: 400 },
15 }
16 },
17 }
18 },
19 ’train’: {
20 ’datasets’: {
21 ’REDD’: {
22 ’path’: ’/data/REDD/redd.h5’,
23 ’buildings’: {
24 1: {’start_time’: ’2011-04-01’,’end_time’: ’2011-04-30’},
25 2: {’start_time’: ’2011-04-01’,’end_time’: ’2011-04-30’}
26 }
27 }
28 }
29 },
30 ’test’: {
31 ’datasets’: {
32 ’IAWE’: {
33 ’path’: ’/data/IAWE/iawe.h5’,
34 ’buildings’: {
35 1: {’start_time’: ’2015-08-05’,’end_time’: ’2015-08-10’}
36 }
37 }
38 },
39 ’metrics’: [’mae’, ’rmse’]
40 }
41 }

Listing 1: ExperimentAPI: Simplifying the definition of algorithm
comparison experiments

algorithms and nine recent disaggregation algorithms on the
task of transfer learning.

This paper is a shortened version of our accepted
Buildsys ’19 paper [Batra et al., 2019] .

2 Experiment API
In this section, we describe the new Disaggregation API pro-
vided by NILMTK. The new rapid experimentation API that
we have introduced ExperimentAPI; can lower the entry
barrier for developing NILM algorithms.

2.1 Experiment Interface
Listing 1 shows the new experiment interface implemented
in NILMTK. This interface is more user-friendly and can
also be used by non-NILM experts for running different al-
gorithms. The API has been designed such that it provides
the maximum flexibility to the user for developing an algo-
rithm and minimizes the time taken for benchmarking against
the existing algorithms. Listing 1 describes an experiment
where NILM algorithms such as Seq2Point, FHMM-EXACT
and Combinatorial Optimization are trained and tested in the
REDD dataset. The following lines explain the the interface
in detail

• mains and appliances use active power (L2).

• with a sampling rate of 60 seconds and not using artifi-
cial aggregate, i.e. using true aggregate reading (L3).

• for appliances: fridge and washing machine (L4).

• three algorithms are used for disaggregation (CO,
FHMM and Seq2Point – L5, 6, 7 respectively) and their
corresponding parameters are specified (L6 for FHMM
and L8-14 for Seq2Point).

• training parameters are specified on L19-29, where the
different training data sets are specified: REDD data set
specified from L21-26, where the path for the data set is
specified in L22 and the start and end time for building
number 1 and 2 are specified in L24 and 25.

• the test parameters are added in a similar format to the
training parameters from L31-38.

• the set of evaluation metrics are on L39.

3 NILMTK-contrib
This section describes the algorithms that are a part of the
NILMTK-CONTRIB repository. Many of the recent state-
of-the-art algorithms in the NILM domain, have been made
compatible with NILMTK and are added here. It should be
noted that we have not proposed the following algorithms,
rather, created a unified toolkit where everyone can use them.

3.1 Mean
The Mean algorithm estimates the output usage of an appli-
ance to be the mean computed over the training data. Mean
algorithm can be used as a strong baseline for evaluating the
power of an algorithm against a sparse appliance.

3.2 Edge Detection
Hart’s algorithm [Hart, 1985] is one of the most used baseline
NILM methods. The algorithm uses edge detection over a 2-
D signal. Edge refers to the difference in power between two
adjacent timestamps, and the edges correspond to transient
states and steady states. Although the algorithm is unsuper-
vised, we use training data, to choose a mapping from edges
to appliances such that accuracy is maximized.

3.3 Combinatorial Optimisation
The combinatorial optimisation (CO) algorithm [Hart, 1992]
has served as a baseline algorithm in the NILM literature [Ut-
tama Nambi et al., 2015; Batra et al., 2015] . The CO algo-
rithm is similar to the well-studied knapsack and subset sum
problem. The main assumption in CO is that each appliance
can be in a given state (1 of K where K is a small number),
where each state has an associated power consumption. The
goal of the algorithm is to assign states to appliances in a way
that the difference between the household aggregate reading
and the sum of power usage of the different appliances is min-
imised. CO’s time complexity is exponential in the number
of appliances and thus does not scale well.

3.4 Discriminative Sparse Coding
Sparse coding estimates the usage of every appliance, by rep-
resenting the aggregate usage as a product of over-complete
bases and activations. The bases are computed by first learn-
ing the bases for every appliance individually and then con-
catenating them. Then, the bases are trained using a discrimi-
native method [Kolter et al., 2010] for resulting in activations
that result in a solution closer to optimal activations.



3.5 Exact FHMM
For every appliance, we learn a hidden Markov model, which
returns the hidden states and the transition probabilities. Each
state of the appliance is associated with a power value. The
models from different appliances are combined to create a
Super HMM, which can represent the states of every ap-
pliance. The aggregate signal is passed through the Super
HMM, which returns the states of every appliance present in
it. The usage of the appliance during a particular timestamp
is the same as the power consumed during the particular state.

3.6 Approximate FHMM
The Exact FHMM assigns a discrete power to every appli-
ance using the Super HMM. The approximate FHMM, as-
signs continuous power to every appliance, by using an ex-
tension over the Exact FHMM.

3.7 Approximate FHMM-SAC
The AFHMM-SAC [Zhong et al., 2014] is an extension over
the Approximate FHMM, where the model has a signal ag-
gregate constraint. The constraint says that the usage of an
appliance over a particular time period is less than a particu-
lar constant, which is computed using training data.

3.8 Denoising Auto Encoder
Denoising Auto Encoder [Kelly and Knottenbelt, 2015] takes
a window of aggregate reading as an input and outputs the
appliance reading for every timestamp in the window. This
was on the first few algorithms that used neural networks for
the task of disaggregation.

3.9 RNN
RNN was one of the models proposed in Neural-NILM pa-
per [Kelly and Knottenbelt, 2015] . The model used Bidi-
rectional LSTM’s for processing the windows and outputs a
single value corresponding to the appliance usage.

3.10 Seq2Point
Seq2Point [Zhang et al., 2018] uses 1-Dimensional convo-
lutions to process the input windows and outputs the reading
corresponding to the mid-point of the window.

3.11 Seq2Seq
Seq2Seq [Zhang et al., 2018] uses 1-Dimensional convolu-
tions to process the input windows and outputs the reading
corresponding to the whole window.

3.12 Online GRU
WindowGRU [Krystalakos et al., 2018] uses Bidirectional
Gated Recurrent Units, to process the input windows and out-
puts the appliance usage at the end of the window.

4 Experimental results
We now describe experiments which we conducted using the
new Experiment API. An extensive discussion on the discus-
sion of the results is beyond the scope of this paper.

4.1 Settings
The neural network algorithms were run on virtual ma-
chines with 2x8 GB vRAM Nvidia Tesla M60 GPU’s. The
CPU intensive models such as DSC, Approx-FHMM, and
Approx-FHMM with SAC were run on computers with 100
cores. The sample period was 60 seconds. All of the neural
networks were run 50 epochs, except OnlineGRU, which
was trained for 30 epochs.

The notebooks can be found at
https://github.com/nilmtk/buildsys2019-paper-notebooks

4.2 Train and test across buildings from the same
data set

In this experiment, we train and test across multiple build-
ings from the Dataport data set. We trained the models on 10
buildings and then tested them on 5 unseen buildings. The
training duration was 14 days and the testing duration was
7 days, with the models training and disaggregating 4 appli-
ances for each building.

Algorithms Fridge Air Electric Washing
Conditioner Furnace Machine

Mean 63.3±07.7 224.8±16.4 81.5±01.6 5.07±00.8
Edge detection 41.1±18.1 86.8±30.5 30.2±11.2 4.8±01.3
CO 65.7±42.3 98.5±85.7 56.9±55.4 105±19.0
DSC 78.4±56.5 71.5±36.0 39.1±17.9 6.5±05.7
ExactFHMM 66.7±23.5 45.5±44.6 95.3±110.5 59.9±17.5
ApproxFHMM 63.8±08.0 139.9±130.2 26.5±12.0 30.7±21.3
FHMM+SAC 59.2 ±05.7 97.0±40.3 35.1±19.0 3.8±00.7
DAE 32.2±11.8 39.3±27.9 29.4±15.3 3.1±01.6
RNN 38.4±07.9 46.6±30.6 33.9±20.6 3.5±01.2
Seq2Seq 28.1±09.5 32.3±25.2 27.9±15.3 2.3±01.2
Seq2Point 23.5±12.1 24.8±20.9 27.5±15.0 2.4±00.9
OnlineGRU 28.8±11.4 25.3±17.1 34.5±15.0 3.0±01.4

Table 1: MAE Mean ± Std. Error: train/test on different set of build-
ings, same data set

The main results for this experiment can be found in Ta-
ble 1. The neural network models perform comparably, with
Seq2Point and Seq2Seq achieving the best performance. In-
terestingly, the edge detection algorithm achieves good per-
formance for fridges. This can be explained by the fact that
for simple appliances with a single ON-OFF component (in
this case, a compressor-controlled duty cycle), simple edge
detection is likely to work well. This is an important finding,
in that it appears that only more complex appliances motivate
the use of complex disaggregation algorithms. The mean al-
gorithm performs reasonably well for washing machine. This
finding suggests that accurately disaggregating sparsely used
appliances is still non-trivial for modern algorithms. How-
ever, a different metric that is better suited to handle class
imbalance would reveal the inaccuracy of the Mean model.

4.3 Train and test across multiple buildings from
multiple data sets across data sets

In this experimental setup, we trained models on 2 appliances
across a building from UK-DALE and then tested them on 1
building from DRED and 1 building from REDD. The total
training duration was 2 months, and the testing duration was
10 days for each building. The previous version of NILMTK,

https://github.com/nilmtk/buildsys2019-paper-notebooks


REDD - Home 1 DRED - Home 1
Algorithms Fridge Washing Fridge Washing

Machine Machine

Mean 62.3 47.2 43.4 25.6
Edge detection 37.0 57.1 21.8 40.7
CO 99.3 171.1 45.9 47.2
DSC 61.5 48.9 34.3 12.1
ExactFHMM 95.9 179.6 32.3 19.1
ApproxFHMM 67.0 227.9 34.6 94.5
FHMM+SAC 48.1 30.4 31.1 19.0
DAE 41.7 50.1 16.9 3.8
RNN 50.9 19.2 27.8 7.3
Seq2Seq 40.9 23.3 18.5 2.9
Seq2Point 44.1 25.5 17.1 3.1
OnlineGRU 36.4 29.5 24.3 6.9

Table 2: MAE: train/test across multiple buildings and data sets

Algorithms True Aggregate Artificial Aggregate
Fridge AC Fridge AC

Mean 43±04 176±40 43±04 176±40
Edge Detection 43±04 156±31 15±06 89±65
CO 104±08 90±34 18±03 15±07
DSC 67±05 130±29 53±14 55±20
ExactFHMM 56±10 83±16 14±01 24±03
ApproxFHMM 46±06 210±78 41±07 77±24
FHMM+SAC 32±04 132±47 36±07 125±28
DAE 22±05 34±08 14±01 8±02
RNN 31±01 78±24 11±01 10±03
Seq2Point 14±02 20±06 5±01 4 ±01
Seq2Seq 16±02 22±05 9±01 9±02
WindowGRU 20±04 23±09 8±02 7±03

Table 3: MAE: train/test across same buildings with true and artifi-
cial aggregate

needed the user to train a model for every algorithm explicitly
and then compute the results for each of them. The API for
generating the results for this experiment is similar to List-
ing 1.

Clearly, all the recent neural network based algorithms
such as DAE, Seq2Point, Seq2Seq, and OnlineGRU perform
the best in each of the cases. Another observation is that
the difference in errors on the REDD dataset and the DRED
dataset. The best error on the DRED dataset is much lower
than the corresponding error on the REDD dataset. Since
the algorithm was also trained on a European dataset, the
model is generating better predictions for the DRED. Also,
the washing machine error on the DRED dataset it very low,
choosing another metric such as F1-Score might be useful
to reveal the inaccuracies of the models. The API can also
be useful for doing experiments in the transfer learning do-
main [Batra et al., 2018] .

4.4 Train and test on artificial aggregate
In the this experiment, we train and test on 2 buildings from
the Dataport data set, using true (obtained from smart me-
ter) and artificial aggregate (calculated by summing the power
readings of the appliances to be disaggregated). The artificial
aggregate does not contain either structured noise from appli-
ances which were not sub-metered or unstructured noise con-
tributed by the mains sensor hardware. This scenario is often
used for algorithm comparisons despite its lack of realism.
This is due to the requirement for training data to be available
for all appliances present in the aggregate signal, which is a
common issue in data sets due to the practical difficultly in

sub-metering all appliances within a building. The training
was done on the first 20 days and the testing was done on the
next 7 days for each building. The 2 most commonly used
appliances were chosen for disaggregation.

Table 3 shows the main result where we can notice the su-
perior disaggregation performance on the artificial aggregate
for all algorithms. The only exception being the mean algo-
rithm, that is independent of the aggregate data. The perfor-
mance of neural networks on the air conditioner has improved
significantly with artificial aggregate. However, the most sig-
nificant improvement comes from the FHMM variants. This
can be explained by the fact that FHMM variants have a state
space that is exponential in the number of appliances and
FHMM can explain the noise in true aggregate via a wrong
appliance state space combination. In the absence of noise,
the probability of estimating the correct state space combina-
tion is much more likely. This experiment represents the ideal
scenario for energy disaggregation and might be prevalent in
geographies where majority of the energy consumption can
be attributed to a small set of appliances.

5 Conclusion
In this paper, we have have described two key improve-
ments to NILMTK; a rewritten model interface to simplify
authoring of new disaggregation algorithms, and a new ex-
periment API through which algorithmic comparisons can
be specified with relatively little model knowledge. In ad-
dition, we have introduced NILMTK-contrib, a new reposi-
tory containing 3 benchmarks and 9 modern disaggregation
algorithms. Furthermore, we have demonstrated these con-
tributions through the most comprehensive algorithmic com-
parison to date. Taken together, these toolkit contributions
enable empirical evaluations to be easily reproduced, there-
fore increasing the rate of progress within the field.

In the short-term, future work will focus on an exhaustive
empirical evaluation of the algorithms presented in NILMTK-
contrib across all publicly available data sets and a range of
accuracy metrics. Longer-term future work will include col-
laboration with the community to ensure new algorithmic ad-
vances are incorporated within the NILMTK-contrib reposi-
tory. In addition, such algorithms will be continuously evalu-
ated in a range of pre-defined scenarios to produce an ongoing
NILM competition.

One of the future directions for NILM is to disaggregate
sparsely used appliances such as washing machine or mi-
crowave. The models tend to predict zero for all the times-
tamps. Neural network based models are accurate for NILM,
but they are computationally very expensive, hence in order
to do real-time disaggregation at a huge scale, one needs ac-
cess to powerful GPU based systems. Hence, we need to ex-
plore techniques that can optimize these neural networks and
reduce the computation power consumed by them.
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