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Abstract
In health care organizations, a patient’s privacy is
threatened by the misuse of their electronic health
record (EHR). To monitor privacy intrusions, logging
systems are often deployed to trigger alerts when-
ever a suspicious access is detected. However, such
mechanisms are insufficient in the face of small bud-
gets, strategic attackers, and large false positive rates.
In an attempt to resolve these problems, EHR sys-
tems are increasingly incorporating signaling, so that
whenever a suspicious access request occurs, the sys-
tem can, in real time, warn the user that the access
may be audited. This gives rise to an online problem
in which one needs to determine 1) whether a warn-
ing should be triggered and 2) the likelihood that the
data request will be audited later. In this paper, we
formalize this auditing problem as a Signaling Audit
Game (SAG). A series of experiments with 10 mil-
lion real access events (containing over 26K alerts)
from Vanderbilt University Medical Center (VUMC)
demonstrate that a strategic presentation of warnings
adds value in that SAGs realize significantly higher
utility for the auditor than systems without signaling.

1 Introduction
To provide medical services, healthcare organizations (HCO)
collect, store and process personal health data in electronic
health records (EHR) systems. Due to the potential value of
such data, EHR systems face non-trivial challenges to assuring
patient privacy. One would expect that such sensitive informa-
tion would be provisioned to health care workers on a need
to know basis only; however, the complexity of healthcare
makes it challenging to know who specifically needs access
to which information and when. As a consequence, one the
greatest risks to privacy are insiders, that is, authenticated users
of EHR systems, who may violate policy and intrude upon
the privacy of certain patients by accessing data they were not
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supposed to use [Fabbri et al., 2013]. Thus, to defend against
such attacks, EHR systems are often armed with an alerting
capability to detect and notify about potential risks incurred
during daily use [Puppala et al., 2016]. This entails the log-
ging of access events, which can be thought of as a collection
of rules, each of which defines a semantic type of a poten-
tially malicious situation [Mazzawi et al., 2017]. The notifica-
tion about potential misuse is provided to administrators who
perform retrospective audit investigations [Kuna et al., 2014;
Blocki et al., 2012].

However, there are hurdles to instituting robust auditing
schemes because 1) the volume of triggered alerts is typically
far greater than the auditing capacity of HCOs [Laszka et al.,
2017], 2) the majority of triggered alerts correspond to false
positives, 3) to mitigate the risk of being caught, attackers
prefer to act strategically, and 4) in the retrospective audit
setting, attacks are not discovered until they are investigated.

In essence, this is a resource allocation problem in an ad-
versarial environment for which the Stackelberg security game
(SSG) is a natural choice to apply for modeling purposes [Do et
al., 2017; Sinha et al., 2018]. In particular, the audit game is a
variation of the SSG designed to discover an efficient audit strat-
egy [Blocki et al., 2013; Blocki et al., 2015; Yan et al., 2018;
Yan et al., 2019]. With respect to strategic auditing, existing
research has focused on deriving a defense strategy by solving,
or approximating, the Strong Stackelberg Equilibrium (SSE).
Unfortunately, it was recently shown that merely applying the
SSE strategy may have limited efficacy in some security set-
tings [Xu et al., 2015]. This can be addressed by strategically
revealing information to the attacker, a mechanism referred to
as signaling [Dughmi and Xu, 2016]). In this setting, the goal
is to set up a signaling scheme to reveal noisy information to
the attacker and, by doing so, influence the attacker’s decision
to favor the defender.

In this paper, we introduce the notion of a Signaling Audit
Game (SAG), which applies signaling to alert and auditing.
When an alert is triggered by a suspicious access request, the
system can, in real time, send a warning to the requestor. At
this point, the attacker has an opportunity to re-evaluate his/her
utility and make a decision about whether or not to continue
with an attack. In contrast to previous models, which are all
computed offline, the SAG optimizes both the warning strategy
and the audit decision in real time for each alert. To illustrate



the performance of the SAG, we evaluate the expected utility
of the auditor with a dataset of over 10 million real VUMC
EHR accesses and predefined alert types. The results indicate
that the SAG consistently outperforms state-of-the-art game
theoretic alternatives that lack signaling by achieving higher
overall utility while inducing nominal increases in computa-
tional burden.

2 Online Signaling in Audit Games
2.1 Motivating Domain
EHR users, such as physicians and nurses, need to access pa-
tients’ EHRs when providing healthcare services. The routine
workflow can be summarized as three steps: 1) a user initiates
a search for a patient’s EHR by name and date of birth, then
the system returns a list of patients (based on a fuzzy matching)
along with their demographic information, 2) from the list, this
user requests access to a patient’s record, and 3) the system
returns the requested record. Due to the complex, dynamic and
time-sensitive nature of healthcare, HCOs typically grant em-
ployees broad access privileges, which creates an opportunity
for malicious insiders to exploit patients’ EHRs [Gunter et al.,
2011]. To deter malicious access, detection tools are commonly
deployed to trigger alerts for suspicious events. Alerts are often
marked with predefined types of potential violations which help
streamline inspection.

2.2 Signaling Audit Games
An SAG is played between an auditor and an attacker within a
predefined audit cycle (e.g., one day). This game is sequential
such that alerts arrive one at a time. For each alert, the auditor
needs to make two decisions in real time: first, which signal
to send (e.g., to warn the user/attacker or not), and second,
whether to audit the alert. Formally, let Xτ

c denote the event
that alert τ will be audited, and Xτ

u denote that it is not audited.
We further let ξτ1 denote the event that a warning signal is sent
for alert τ , while ξτ0 denotes the event that no warning is sent
(i.e. a “silent signal”). The warning ξτ1 is delivered privately
through a dialog box on the requestor’s screen, which might
communicate “Your access may be investigated. Would you
like to proceed?”. Xτ

c , X
τ
u , ξ

τ
1 , ξ

τ
0 are random variables whose

probabilities are to be designated.
We assume that there is a finite set of alert types T and, for

each t ∈ T , all alerts are considered equivalent for our purposes
(i.e., result in the same damages to the system). The auditor
has an auditing budget B that limits the number of alerts that
can be audited at the end of the cycle. For each alert type t, let
V t denote the cost (or time needed) to audit an alert of type t.
Thus, if θt is the probability of auditing alerts of type t and dt
is the number of such alerts, the budget constraint implies that∑
t θ
t · V tdt ≤ B.

Since the setting is online, an optimal policy for the auditor
must consider all possible histories of alerts and the correlation
between alerts. Given that this is impractical, we simplify the
scheme so that 1) each alert is viewed independently of alerts
that precede it and 2) future alerts are considered with respect
to their average relative frequency. Specifically, we assume that
each attack effectively selects an alert type t, but do not need
to consider the timing of attacks. Rather, we treat each alert as
potentially adversarial. This implicitly assumes that an attack

triggers a single alert, as we can define alert types that capture
all realistic multi-alert combinations.

For convenience, we refer to the alert corresponding to an
attack as the victim alert. If the auditor fails to audit a victim
alert of type t, the auditor and the attacker will receive utility
U td,u and U ta,u, respectively (subscript d denotes defender, i.e.
auditor, and a denotes attacker). On the other hand, if the audi-
tor audits a victim alert of type t, the auditor and the attacker
will receive utility U td,c and U ta,c, respectively. Naturally, we
assume U ta,c < 0 < U ta,u and U td,c ≥ 0 > U td,u.

Figure 1 demonstrates the key interactions of both players
along the timeline. Each yellow block within the audit cycle
represents a triggered alert and the corresponding interactions
with it. The auditor continues to update the real time probability
of auditing any alert (may or may not be triggered) with respect
to the alert type and the time point τ . In other words, the auditor
commits in real time to the auditing and signaling strategy. In
this case, the auditor always moves first.

Access request
over a target

Audit cycle begins

Commit to a
mixed strategy

Proceed to
attack or quit

Audit cycle ends

Randomly choose
alerts to audit

Update available
budget

Trigger an alert

Time

Sending a
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Figure 1: The interactions between auditor (blue) and attacker (red).

A warning signaling scheme, captured by the joint probabil-
ity distribution of signaling and auditing, can be fully specified
through four variables for each τ :

P(ξτ1 , X
τ
c ) = pτ1 , P(ξτ1 , X

τ
u) = qτ1 ,

P(ξτ0 , X
τ
c ) = pτ0 , P(ξτ0 , X

τ
u) = qτ0 .

(1)

Upon receiving the signal, the attacker reacts as follows:
• After ξτ1 : the system presents two choices to the attacker:
“Proceed” to access the requested record or quit.

• After ξτ0 : the attacker automatically proceeds to access
the requested record.

For convenience, when possible we omit the superscript τ .
Figure 2 illustrates the temporal sequence of decisions in the

SAG. Each edge in the figure is marked with its corresponding
joint probability of a sequence of decisions up to and including
that edge. Note that the two gray nodes are not extended
because they do not lead to any subsequent event.1 Further,
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Figure 2: The decision tree of the auditor and an arbitrary user, the
actions for which are shown in blue and red, respectively.

observe that, p1+ q1+ p0+ q0 = 1, and the overall probability
of auditing this alert is P(Xc) = P(Xc, ξ1) + P(Xc, ξ0) =

1The upper gray node corresponds to the case when an access
request is abandoned. The lower one represents an impossible case
because the user automatically gets the requested record.



p1 + p0. Conditional on the warning signal ξ1, the probability
of auditing this alert is thus P(Xc|ξ1) = p1/(p1 + q1).

Since the auditor has a fixed auditing budget, she will need
to update the remaining budget after determining the signal-
conditional audit probability for the current alert. We use Bτ
to denote the remaining budget before receiving alert τ . Let t
denote the type of alert τ and τ + 1 denote the next alert. After
the signaling scheme for τ is executed, the auditor then updates
Bτ for the use of the next alert τ + 1 as follows:

• If ξτ1 is sampled: Bτ+1 = Bτ − pτ1/(pτ1 + qτ1 ) · V t.
• If ξτ0 is sampled: Bτ+1 = Bτ − pτ0/(pτ0 + qτ0 ) · V t.

Additionally, we always ensure that Bτ ≥ 0. The key chal-
lenge is to compute the optimal pτ1 , q

τ
1 , p

τ
0 , q

τ
0 for each alert τ

online by accounting for the remaining budget and the estimate
number of future alerts. This needs to be performed to ensure
that the auditor does not spend the budget at a rate that is exces-
sively fast or slow. The SAG can be viewed as a variation on
the Stackelberg game, where it includes signaling and makes
decisions about auditing online upon the arrival of each alert.
The premise behind our solution is therefore a Strong Stackel-
berg equilibrium of the SAG, in which the auditor commits to a
randomized joint signaling and auditing decision, and the asso-
ciated probability distribution is observed by the attacker, who
then decides first upon the alert type to use, and subsequently
whether to proceed after a warning.

3 Optimizing SAGs
Now, we design an algorithm for solving SAGs. Here we fix
the alert τ to a particular type t and, thus, the superscript will,
at times, be omitted for notational convenience.

From the perspective of the attacker, whether to proceed or
quit after receiving a warning signal depends on his conditional
expected utility:

Eta(util|ξ1) =
pt1

pt1 + qt1
· U ta,c +

qt1
pt1 + qt1

· U ta,u.

We impose the constraint Eta(util|ξ1) ≤ 0 such that the at-
tacker’s best response to ξ1 is to quit, in which case both play-
ers will receive 0 utility. We do not enforce constraints for ξ0
because the potential attacker does not have any option but to
proceed. In this case, the expected utility of the auditor is

Etd(util|ξ0) =
pt0

pt0 + qt0
· U td,c +

qt0
pt0 + qt0

· U td,u.

Overall, the expected utility for the attacker is

Eta(util) = (pt0 + qt0) · Eta(util|ξ0) = pt0 · U ta,c + qt0 · U ta,u.

Accordingly, the auditor’s expected utility is

Etd(util) = (pt0 + qt0) · Etd(util|ξ0) = pt0 · U td,c + qt0 · U td,u.

However, a side effect is that, the warnings sent by the
auditor may pose an additional utility loss to the auditor in
practice, which we call usability cost. This is because when
normal users request access to sensitive data and receive a
warning message, they may walk away by choosing quit in-
stead of “Proceed”, which induces a loss in operational ef-
ficiency for the organization. For each type t′, we set this
loss to be proportional to the product of the probability of

sending warnings pt
′

1 + qt
′

1 , the probability of being deterred
P t
′

and the expectation of the number of future false positive
alerts to the end of the current audit cycle Et

′

τ . The loss in-
curred for each quit by a normal user is set to be Ct′(< 0).
Then, the expected utility of the auditor can be updated as
pt0 · U td,c + qt0 · U td,u +

∑|T |
t′=1(p

t′

1 + qt
′

1 ) · P t
′ · Et′τ · Ct′ .

The optimal signaling scheme (or, more concretely, joint
signaling and audit probabilities) can be computed through the
following set of LPs:

max
p0,p1,q0,q1,Bτ

pt0 · U td,c + qt0 · U td,u +

|T |∑
t′=1

(pt
′
1 + qt

′
1 ) · P t

′
· Et

′
τ · Ct′

s.t. ∀t′, pt0 · U ta,c + qt0 · U ta,u ≥ pt
′
0 · U t

′
a,c + qt

′
0 · U t

′
a,u,

∀t′, pt
′
1 · U t

′
a,c + qt

′
1 · U t

′
a,u ≤ 0,

∀t′, pt
′
1 + pt

′
0 = Edt′τ ∼Dt′

τ

(
Bt
′
τ

V t′dt′τ

)
,

∀t′, pt
′
1 + pt

′
0 + qt

′
1 + qt

′
0 = 1,∑

t′∈{1,...,|T |}

Bt
′
τ ≤ Bτ ,

∀t′, Bt
′
τ ∈ [0, Bτ ], pt

′
0 , q

t′
0 , p

t′
1 , q

t′
1 ∈ [0, 1],

(2)where we assume type t is the best one for the attacker to
potentially exploit, and Bτ = {Btτ} for all t. Note that, in
the objective function, the incurred additional loss is an ac-
cumulated value that considers the amount of time remaining
in the period for the current audit cycle. The likelihood of
sending warning signal in the current time point is a real time
estimation of future warnings. Due to the fact that attacks
are extremely rare in practice in comparison to the magnitude
of alerts, in solving LP (2) we use the expected number of
future alerts Edt′τ ∼Dt′

τ
(dt
′

τ ) to approximate Et
′

τ . As a result,

Edt′τ ∼Dt′
τ
(dt
′

τ ) can then be estimated from historical data col-
lected in previous audit cycles. Our goal is thus to find the
optimal signaling scheme for all types, and simultaneously, the
best budget allocation strategy. We use p0, p1, q0 and q1 to
denote the warning signaling scheme for all types, namely, the
set {pt′0 |∀t′}, {pt

′

1 |∀t′}, {qt
′

0 |∀t′} and {qt′1 |∀t′}, respectively.
The first constraint in LP (2) ensures that attacking type t

is the best response strategy for the attacker. The second con-
straint indicates that the attacker, when receiving a warning
signal, will quit attacking any type. A difference on the con-
straint of budget allocation between SAG and SSG is that we
leave out a constant B from the available budgets for purpose
of auditing, at the end of the audit cycle, a special attacking
strategy of an attacker, who keeps requesting sensitive data
and quitting until receiving no warning signal. We refer to
the optimal solution among the |T | instances of LP (2) as the
Online Stackelberg Signaling Policy (OSSP). In particular, we
use θossp to denote the vector of coverage probability at OSSP.

A set of important theoretic features of OSSP are presented
in the full version of this study [Yan et al., 2020].

4 Model Evaluation
4.1 Dataset
To perform a meaningful evaluation, we assessed the approach
with a dataset of EHR access logs from the Vanderbilt Univer-
sity Medical Center (VUMC). The data covers 56 continuous



Table 1: The advantages of OSSP over online SSE in terms of the mean (and the standard deviation) of the differences in the auditor’s expected
utility (15 testing days).

B
Ct = −1 Ct = −5 Ct = −10

α = 1% α = 5% α = 1% α = 5% α = 1% α = 5%

30 60.87 ± 28.31 15.99% 47.01 ± 32.17 12.45% 40.43 ± 23.95 10.59% 29.89 ± 28.77 7.92% 26.91 ± 25.77 7.06% 10.94 ± 24.93 2.90%

50 165.83 ± 24.49 47.26% 147.51 ± 27.74 42.65% 143.19 ± 33.98 40.87% 117.52 ± 34.56 34.20% 127.31 ± 37.55 36.23% 106.21 ± 38.85 31.21%

70 252.57 ± 20.44 77.31% 235.14 ± 23.57 72.87% 227.59 ± 33.10 69.31% 204.33 ± 36.77 63.63% 225.35 ± 37.58 68.73% 198.69 ± 40.93 61.89%

normal working days in 2017. The total number of unique
accesses 〈Date, Employee, Patient〉 is on the order of 10.75M .
The mean and standard deviation of daily unique accesses are
approximately 192K and 8.97K, respectively. We focus on the
following alerts types: employee and patient: 1) share the same
last name, 2) work in the same department, 3) share the same
residential address, and 4) are neighbors within a distance less
than 0.5 miles. When an access triggers multiple distinct types
of alerts, their combination is regarded as a new type. We refer
readers to [Yan et al., 2020] for the statistics of alert types, as
well as the experts’ estimates of payoff structure for players.

4.2 Experimental Setup
The audit cycle is defined as one day from 0:00:00 to 23:59:59.
From the dataset, we construct 15 groups, each of which con-
tains the alert logs of 41 continuous normal working days as the
historical data (for estimating the distributions of future alerts in
all types), and the alert logs of the 1 subsequent day as the day
for testing purpose. We set up a real time environment for eval-
uating the performance in terms of the auditor’s expected utility.
We set the audit cost per alert to V t = 1,∀t ∈ {1, ..., |T |} and
the frequency at which users quit when they receive the warning
messages to P t = 0.186 for all types based on observations.

We compare the real time auditor’s expected utility for each
triggered alert between the OSSP and both the offline (which
determines the auditing strategy at the end of the auditing cycle)
and online SSE (which determines the auditing strategy for each
alert in real time without signaling).

To investigate the robustness of the results over different
game conditions, we evaluate the performance by varying three
factors. First, we vary the loss value for the auditor with respect
to each quit of a normal user when receiving a warning message.
We setCt = {−1,−5,−10}. Second, to deter the attacker who
quits until they receive no warning in the safe period for an
SAG, we assess a series of constant budgets, which we set to
α = {1%, 5%} of the total available budget B. We do not
consider this situation in the baseline strategies because such
loss does not apply. Third, we vary the total auditing budget.
Specifically, we consider B = {30, 50, 70}.
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Figure 3: The auditor’s expected utility in the OSSP and alternative
equilibria with B = 50, α = 1% and Ct = −1 for the OSSP.

4.3 Results
Due to space limitations, we only show the results of two
testing days along the timeline in Figure 3, as the results in

other testing days and game conditions show similar patterns.
There are two notable findings and implications. First, in

terms of the expected utility of the auditor, OSSP significantly
outperforms the offline SSE and the online SSE. This suggests
that the SAG increases auditing effectiveness. We believe that
this advantage is due to the optimized signaling mechanism,
which ensures the loss of the auditor is zero when sending warn-
ing messages. Second, the sequences of online SSE are close
to the corresponding offline SSE sequences. This indicates that
the auditing procedure does not benefit from determining only
the coverage probability for each of the alert types in real time.
In other words, the signaling mechanism in the SAG can assist
the auditing tasks in various environments.

We then expanded the investigation to consider various con-
ditions of auditing. We computed the mean (and standard devi-
ation of) differences between the OSSP and the corresponding
online SSE for each triggered alert across 15 testing days. The
results are shown in Table 1, where we also indicate the per-
centage of the averaged improvement in each setting. From the
results, we have the following significant observations. First, it
is notable that OSSP consistently outperforms the online SSE
with respect to the auditor’s expected utility. For example, in
the setting that Ct = −1 for all t and α = 1%, as B grows
from 30 to 70, the auditor’s expected utility improvement grows
from 16% to 77%. Second, by fixing B and Ct for all t, the au-
ditor’s expected utility decreases when we reserve more budget
to investigate the repeated requests by single user. Yet, this is
not unexpected because this approach reduces the amount of
consumable auditing resources. Third, by increasing the cost
of deterring a single normal data request, we also weaken the
advantages of OSSP over the online SSE.

In addition, we tested the average running time for optimiz-
ing the SAG on a single alert across all the testing days. Using
a laptop running Mac OS, an Intel i7 @ 3.1GHz, and 16GB
of memory, we observed that the SAG could be solved in 0.06
seconds on average. As a consequence, it is unlikely that sys-
tem users would unlikely perceive the extra processing time
associated with optimizing the SAG in practice.

5 Conclusion
Alert-based auditing is often deployed in EHR systems to ad-
dress attacks to patients’ privacy. However, the volume of
alerts is often beyond the capability of administrators, thus
limits the effectiveness of auditing. Our research illustrates
that strategically incorporating signaling mechanisms into the
data request workflow can significantly improve the auditing
work. We investigated the features, as well as, the value of
a game theoretic auditing, along with an Online Stackelberg
Signaling Policy to solve the game. While we demonstrated the
feasibility of this approach with the audit logs of an electronic
medical record system, the approach is sufficiently generalized
to support auditing in a wide range of environments.
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