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Abstract
During the COVID-19 pandemic, committees have
been appointed to make ethically difficult triage de-
cisions, which are complicated by the diversity of
stakeholder interests involved. We propose a dis-
ciplined, automated approach to support such dif-
ficult collective decision-making. Our system aims
to recommend a policy to the group that strikes a
compromise between potentially conflicting indi-
vidual preferences. To identify a policy that best
aggregates individual preferences, our system first
elicits individual stakeholder value judgements by
asking a moderate number of strategically selected
queries, each taking the form of a pairwise com-
parison posed to a specific stakeholder. We pro-
pose a novel formulation of this problem that se-
lects which queries to ask which individuals to best
inform the downstream recommendation problem.
Modeling this as a multi-stage robust optimization
problem, we show that we can equivalently re-
formulate this as a mixed-integer linear program
which can be solved with off-the-shelf solvers. We
evaluate the performance of our approach on the
problem of recommending policies for allocating
critical care beds to patients with COVID-19. We
show that asking questions intelligently allows the
system to recommend a policy with a much lower
regret than asking questions randomly. The lower
regret suggests that the system is suited to help a
committee reach a better decision by suggesting
a policy that aligns with stakeholder value judg-
ments.

1 Introduction
1.1 Motivation
During the COVID-19 pandemic, many hospitals are experi-
encing a shortage of resources critical to patient care such as
ventilators, N-95 masks, or critical care beds [Ranney et al.,
2020]. Without policies to guide their decisions, doctors face
the burden of having to repeatedly make life-or-death deci-
sions. This not only causes psychological distress in doctors
[Greenberg et al., 2020; Ferraresi, 2020], but could also lead

to inconsistent and inefficient allocation. Therefore, a pre-
ferred and widely adopted approach is to let committees de-
cide on policies for allocating scarce medical resources. Doc-
tors can then follow those policies, possibly with the help of
on-the-ground triage committees [Emanuel et al., 2020].

But making a collective decision between different policies
is no easy task, since it requires making difficult moral trade-
offs between, for instance, saving the most lives and giving
people equal chances of treatment. Moreover, the stakehold-
ers on the committees are likely to disagree about what trade-
offs are appropriate.

To help committees reach a good decision, we propose a
system which learns about stakeholder preferences by asking
pairwise comparison questions and then recommends an al-
ternative that best aligns with the diverse stakeholder value
judgements. The recommended alternative could be directly
adopted as the group’s decision. More realistically, it could
serve as a starting point for further deliberation and decision-
making by the group. Finding such an alternative is a chal-
lenging problem because asking all possible questions to all
individuals to obtain full knowledge about their preferences
would impose unreasonable burdens on participants. Thus,
the system must recommend policies under uncertainty about
stakeholder preferences and intelligently choose which ques-
tions to ask to be able to make a good recommendation.

While we focus on collective decisions about policies for
allocating scarce medical resources, our approach is applica-
ble to any collective decision. For instance, it could also be
used to help committees decide between policies for allocat-
ing scarce housing resources to those experiencing homeless-
ness.

1.2 Background & Literature Review
There is a rich literature on different rules for mapping infor-
mation about individual preferences or utilities to a collective
ranking or scoring of the alternatives. The most commonly
studied problem assumes that the full preference rankings
for all agents are known, and investigates preference aggre-
gation functions, which map individual preference rankings
to a ranking for the group [Arrow, 1951]. The case of incom-
plete information about agents’ preference has also been stud-
ied [Conitzer and Sandholm, 2002; Konczak and Lang, 2005;
Benabbou and Perny, 2016]. This invites investigating which
individual preferences to elicit to make a highly-ranked rec-



ommendation based on partial information [Pini et al., 2011;
Lu and Boutilier, 2011; Naamani-Dery et al., 2015].

We consider elicitation and recommendation in a slightly
different setting. We assume that the agents’ preferences
are determined by cardinal utility functions and, further-
more, that the utilities of different agents lie on the same
scale, permitting interpersonal utility comparisons (see [Sen,
1970] for a defense of this assumption). This richer in-
formation about agents allows using more nuanced ways
of ranking and scoring alternatives for the group, such as
summing individual utilities. Questions of optimal elicita-
tion and recommendation based on partial information have
been addressed in this utility-based setting, but primarily in
the single-agent case. Some adopt a Bayesian approach, in
which a prior probability distribution over the agent’s possi-
ble utility functions is updated based on the agent’s responses
to pairwise comparison questions [Chajewska et al., 2000;
Boutilier, 2002]. Others adopt a non-probabilistic approach
in which a set of feasible utility functions is narrowed by dis-
carding utility functions that are inconsistent with the prefer-
ences revealed by the agent’s responses. In this line work, it
is often assumed that alternatives are represented by feature
vectors and agents’ utilities are linear functions in those fea-
tures or have a generalized additive form [Toubia et al., 2003;
Toubia et al., 2004; Boutilier et al., 2006; Bertsimas and
O’Hair, 2013; Vayanos et al., 2020]. Our contribution fits
into that line of work, as we also work with sets of feasible
utility functions and share the assumption that utility func-
tions are linear. The work closest to our own by [Vayanos
et al., 2020], like us, integrates the elicitation and recom-
mendation phases in a single problem to compute optimal
queries and recommendations based on partial information.
However, we differ from existing contributions in this lit-
erature in that we consider the problem of elicitation and
recommendation based on partial information to a group of
agents rather than a single agent. The multi-agent setting
has received less attention so far. [Boutilier et al., 2015;
Ferrara et al., 2017] consider aggregation with utility-based
scoring of alternatives based on ordinal individual preference
information, but they do not study how to optimally elicit sub-
sets of preferences with the goal of ultimately recommending
an item. [Zhao et al., 2018] consider elicitation and aggre-
gation in a multi-agent setting, but they use a probabilistic
approach and voting rules to aggregate individual utilities.

Our contributions are threefold: a) We propose the first (to
the best of our knowledge) formal mathematical formulation
of the problem of eliciting and aggregating preferences in a
way that integrates the learning and recommendation phases
under the polyhedral approach to uncertainty modeling; b)
We show that this problem, which is sequential and involves
uncertainty, can be rewritten equivalently as a mixed-integer
linear program (MILP) which can be solved with off-the-
shelf solvers; c) We apply our approach to the problem of
recommending policies for critical care bed allocation during
the COVID-19 pandemic. We simulate policy outcomes us-
ing real data from the UK. We show that asking well-chosen
questions allows the system to recommend a policy to the
group with a much lower sum-utility regret than the best pol-
icy one could recommend if one asked questions at random.

A small number of queries suffices to significantly reduce the
worst-case regret. The system therefore appears to be suited
to help a committee reach a better decision by suggesting
a promising policy without requiring stakeholders to spend
large amounts of time answering queries.

2 Model

We assume there are A agents for which we aim to recom-
mend a single alternative from a set of alternativesR. Before
this recommendation, we can ask agents a moderate number
K of pairwise comparison queries of the form ‘Do you prefer
alternative A or alternative B?’ to guide this decision.

More formally, let R := {xi}i∈I ⊆ RJ , where I :=
{1, . . . , I} is the set of alternatives. A query is a comparison
between two alternatives. The set of possible queries is C :={
(i, i′) ∈ I2 | i < i′

}
. A particular choice of K queries in-

dexed in the set K := {1, . . . ,K} is represented by two vec-
tors. First, ι ∈ CK specifies which alternatives are compared
in the K queries. For κ ∈ K, we write ικ := (ικ1 , ι

κ
2 ) ∈ C to

denote that the κth query elicits the preference between alter-
natives xι

κ
1 and xι

κ
2 . Second,α ∈ AK specifies which agents

the different queries are posed to, where A := {1, . . . , A} is
the set of agents. Thus, for κ ∈ K, ακ is the agent to whom
the κth query is directed.

Each agent’s utility function is assumed to be linear in x ∈
RJ . Thus, it can be represented as a vector of coefficients in
RJ . We use Ua ⊆ RJ to denote the agent’s uncertainty set,
the set of feasible utility functions for agent a. Each element
ua ∈ Ua represents one possible realization of the agent’s
utility function. We assume that Ua is a non-empty bounded
polyhedron such that Ua =

{
ua ∈ RJ | Baua ≥ ba

}
, for

some Ba ∈ RM×J , ba ∈ RM , a very common assumption
in the literature (see [Toubia et al., 2003; Toubia et al., 2004;
Boutilier et al., 2006; Bertsimas and O’Hair, 2013; Vayanos
et al., 2020]).

When asked the κth query, an agent is able to respond in
one of two ways, using the elements of S := {−1, 1}: either
the agent prefers alternative 1 (sκ = 1) or prefers alternative
2 (sκ = −1). Our problem formulation assumes that agents
are never indifferent. This assumption is innocuous because
the resulting problem has the same solutions and objective
values as the problem which allows for indifference, as an
argument similar to the one given by [Vayanos et al., 2020]
shows. After asking agents a series of queries and observing
their responses, the updated uncertainty set for agent a, which
contains the utility functions consistent with the observed re-
sponses, is defined as

Ua(α, ι, s) :=


u ∈ Ua : ∀κ ∈ K : ακ = a
u>
(
xι

κ
1 − xικ2

)
≥ 0, sκ = 1

u>
(
xι

κ
1 − xικ2

)
≤ 0, sκ = −1

 .

(1)
Given a vector of queries ι posed to agents α, we denote
the set of responses consistent with at least one realization
of the utility functions in Ua, for each a, by S(α, ι) :={
s ∈ SK | Ua(α, ι, s) 6= ∅, ∀ a ∈ A

}
.



3 Problem Formulation
In “offline elicitation,” the decision-maker asks all K pair-
wise comparison queries at once before receiving any of the
agents’ responses. This scenario arises in situations where
preference information is gathered in decentralized systems,
such as paper surveys or surveying agents located in different
locations/time zones such as hospitals across the nation.

In “online elicitation,” queries are asked one at a time, us-
ing the responses to previous queries to guide which queries
are asked next. This arises in settings such as surveys that
are administered by a centralized computer. By incorporating
previous responses into the elicitation process, the decision-
maker can ask queries providing richer preference informa-
tion and reducing uncertainty more than in the offline setting.

For both settings, we consider the problem of a decision-
maker who aggregates individual utilities for an alternative
by summing them (often called “utilitarianism”). To account
for the uncertainty in each agent’s preferences, the decision-
maker recommends an alternative that is robust in the sense
that it minimizes the worst-case regret across all utility func-
tions consistent with the agents’ responses.

Offline Setting In the offline setting, the decision-maker
can select K total pairwise comparison queries to ask of any
of these agents, which must be decided before receiving any
answers. To formulate this as an optimization problem, note
that the decision-maker must first select K queries ικ ∈ C
and agents ακ ∈ A for κ ∈ K. The appropriate agents then
respond to these queries with answers sκ such that they are
consistent with a realization of their utility function in Ua.
The decision-maker can then confirm that ua ∈ Ua(α, ι, s)
for each agent and then recommends an alternative with the
minimum worst-case group regret. This problem takes the
following form:

min
ι∈CK,
α∈AK

max
s∈S(α,ι)

min
x∈R

max
ua∈Ua(α,ι,s),
∀ a∈A,
x′∈R

∑
a∈A

[
(ua)>(x′ − x)

]
.

(2)

Online Setting We now informally describe the online pro-
cedure. Consider the same regret scenario as the offline set-
ting, but now the decision-maker selects K queries, ικ ∈ C
and agents ακ ∈ A for κ ∈ K one at a time. Only after ob-
serving the answer sκ to the κth query is the (κ+ 1)st query
decided and the agent’s uncertainty set is updated. After re-
ceiving answers to all K queries that are consistent with each
agent’s uncertainty set, the decision-maker recommends an
alternative that minimizes the regret of the group.

4 MILP Reformulation
In order to model Problem (2) as a finite optimization prob-
lem, we allow the recommended alternative to depend on
the response scenario s, allowing us to interchange the inner
maximization and minimization terms in Problem (2). Ad-
ditionally, we can replace S(α, ι) with SK . This intuitively
holds true because, when allowing for inconsistent agent re-
sponses, we have that Ua(α, ι, s) = ∅ for some a ∈ A and
Problem (2) has an optimal value of −∞. Thus, we could
never obtain a solution with a higher objective function value

than those of consistent responses. Hence, we can formulate
Problem (2) as the following equivalent problem

min
ι∈CK,
α∈AK

min
xs∈R:

s∈SK

max
s∈SK

max
ua∈Ua(α,ι,s),
∀ a∈A,
x′∈R

∑
a∈A

[
(ua)>(x′ − xs)

]
,

(3)
where xs denotes the alternative to recommend in response
scenario s ∈ SK .

Now consider the inner maximization of Problem (3) for
fixed ι ∈ CK , α ∈ AK , xs ∈ R : s ∈ SK , s ∈ SK , x′ ∈ R
using (1) and the polyhedral representation of Ua:

max
∑
a∈A

[
(ua)>(x′ − xs)

]
s.t. (ua)>sκ (x

ικ1 − xικ2 ) ≥ 0 ∀κ ∈ K : ακ = a

Baua ≥ ba ∀ a ∈ A.
(4)

By using standard robust optimization techniques, see e.g.,
[Ben-Tal et al., 2009], we take the dual of Problem (4) and see
that Problem (3) is equivalent to the following finite program

min τ
s.t. τ ∈ R, ι ∈ CK ,α ∈ AK ,xs ∈ R,∀ s ∈ SK

ζ(x
′,s) ∈ RK−

β(x′,s,a) ∈ RM−∑
κ∈K:
ακ=a

sκ (xι
κ
1 − xι

κ
2 ) ζ(x

′,s)
κ

+(Ba)>β(x′,s,a) = x′ − xs


∀x′ ∈ R,
∀ s ∈ SK ,
∀ a ∈ A

τ ≥
∑
a∈A

(β(x′,s,a))>ba ∀x′ ∈ R,∀ s ∈ SK ,

(5)
where ζ(x

′,s) and β(x′,s,a) are the set of dual variables corre-
sponding to the first (resp. second) set of constraints in Prob-
lem (4). Problem (5) can then be converted to an MILP by
introducing binary variables to encode the choice of α and ι
and using standard linearization techniques, see e.g., [Hillier
and Lieberman, 2001].

This MILP is solved directly for the offline problem. Us-
ing a conservative approximation that uses a folding horizon
approach, we solve a series of MILPs for the online problem.
For each period, we ask the query that is optimal if this were
the final query to be asked and then update the uncertainty set
accordingly. At the end of the planning horizon, we make the
recommendation that is robust against any utility vector that
is consistent with the responses collected over time.

5 Resource Allocation during the Pandemic
We now apply our approach to the problem of scarce resource
allocation during the COVID-19 pandemic (see Section 1.1).

5.1 Simulating Policy Outcomes
We simulate how different policies assign scarce critical care
beds to COVID-19 patients. The metrics of a policy’s perfor-
mance, or the features by which agents will evaluate them,



are the total number of life-years saved, the probabilities of
receiving critical care across different age groups, and the sur-
vival probabilities across different age groups.

For each day, we simulate the arrival of patients, the assign-
ment of waiting patients to free critical care beds by the pol-
icy based on patient characteristics, as well as the recovery or
death of patients. We run this simulation at the country-level,
with UK data, for April 1st to July 15th, 2020. To set simula-
tion parameters, we use projections of the Institute for Health
Metrics and Evaluation (IHME) model1 as well as outcome
data from patients with COVID-19 from the UK Intensive
Care National Audit and Research Centre.2 We only use age
as a patient characteristic in our model. The primary obstacle
to using more patient characteristics is the unavailability of
patient outcome data based on, say, both age and race.

A policy assigns a score to each patient based on their age
and the number of days they waited for a critical care bed.
It then allocates free beds to highest-scoring patients. We
consider policies that use regression trees to assign a score
to a patient. Each node contains a condition on the patient’s
age or waiting time, and all patients that reach the same leaf
are assigned the same score. We generate 25 regression trees
of depth 3 by randomly picking a feature and a comparison
value for each non-leaf node, and a random number between
0 and 1 for leaf nodes. We then simulate the outcomes of
each policy, obtaining 25 alternatives with 15 features each.
Therefore, there are 25 · 24 = 600 possible pairwise compar-
ison questions each agent could be asked.

5.2 Preference Elicitation Results
For both the offline and online elicitation we assume the fol-
lowing scenario. Using the policies described in Section 5.1,
we solve the MILP formulation of Problem (5) (or a series of
the MILP formulation in the online case) with A = {1, 2}.
We assume that each component of the utility vector for both
agents lies in [0, 1], i.e., they have a non-negative utility for
each policy feature. Finally, we normalize the worst case re-
gret between the scenario in which no questions are asked,
corresponding to a regret of 1, and a conservative lower bound
in which we have complete knowledge of the agents’ utility
functions, corresponding to a regret of 0.

Offline Elicitation Using both a decomposition technique
and a conservative approximation approach to speed up
computations while solving the MILP (see [Vayanos et al.,
2020]), we show the results for the worst case regret over the
simulated policies in Figure 1 for K = 1, . . . , 10. We see
that our method (MinMaxRegret) outperforms that of ask-
ing random queries (Random).

Online Elicitation To simulate the responses of each agent,
we sample their true utility vector uniformly at random in a J-
dimensional sphere of radius one. The optimality results over
10 instances of 2 agents are shown in Figure 2 for K = 10.
We see that again MinMaxRegret outperforms Random.
In fact, our method’s worst performing realization obtains a
lower regret value than that of the best performing random

1http://www.healthdata.org/covid/data-downloads
2https://www.icnarc.org/Our-Audit/Audits/Cmp/Reports
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Figure 1: Optimality results for offline elicitation for A = {1, 2}.
The blue shaded region corresponds to asking random queries over
10 instances, where the blue line corresponds to the median per-
formance. The red line corresponds to the performance of asking
minmax regret queries over a single instance.
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Figure 2: Optimality results for online elicitation for A = {1, 2}.
The blue (resp. red) shaded region corresponds to asking random
(resp. minmax regret) queries over 10 instances of 2 agents. The
red and blue line correspond to the median performance of each re-
spective method.

realization, a promising result. Additionally, on average, the
online elicitation method leads to lower regret than the offline
elicitation for both MinMaxRegret and Random, obtaining
more utility information with fewer queries asked.

6 Future Work
Using our preference elicitation framework, stakeholders are
able to streamline their collective decision-making process by
providing a compromise solution in both socially and time
sensitive settings such as scarce resource allocation during
the COVID-19 pandemic. For future work and exploration,
we aim to increase the number of agents to a more realistic
committee group size (e.g., 10 agents) and to explore different
methods of aggregating individual preferences, investigating,
among other things, the extent to which they provide incen-
tives for agents to misreport their preferences.
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