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Abstract

An ongoing challenge in machine learning is to im-
prove the transparency of learning models, help-
ing end users to build trust and defend fairness and
equality while protecting individual privacy and in-
formation assets. Transparency is a timely topic
given the increasing application of machine learn-
ing techniques in the real world, and yet much
more progress is needed in addressing the trans-
parency issues. We propose critical research ques-
tions on transparency-aware machine learning on
two fronts: know how and know that. Know-how
is concerned with searching for a set of decision
objects (e.g. functions, rules, lists, and graphs)
that are cognitively fluent for humans to apply and
consistent with the original complex model, while
know-that is concerned with gaining more in-depth
understanding of the internal justification of the de-
cisions through external constraints on accuracy,
consistency, privacy, reliability, and fairness.

1 Introduction
As human beings we make decisions everyday, sometimes
explicitly and sometimes implicitly. In any case, we live our
lives under relative constraints that give rise to rational deci-
sion making—neutralizing inevitable losses by gaining some-
thing we treasure more. Machine learning takes rational de-
cision making to a whole new level. Rigorous mathematical
models empower machine learning algorithms to search for
optimal solutions for problems under constraints, often way
more complicated than any human mind can comprehend.
Despite the enormous potential of success in real life, mak-
ing critical decisions with machine learning algorithms comes
with many great challenges. The most apparent one is trans-
parency. No one should feel comfortable when decisions, es-
pecially critical ones, are made by and within a black box.
Without transparency, we cannot speak for machine learning
algorithms in justifying the decisions they deduce and their
ultimate consequences on trust, fairness, privacy, and secu-
rity. But what is transparency?
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When concerns about transparency of machine learn-
ing algorithms are raised, we often coarsely relate trans-
parency to simplicity or understandability while neglecting
the panoramic vision of the issue. Is transparency solely tied
to human understandability? There are quite a few machine
learning algorithms that directly or indirectly produce human
comprehensible output, such as a linear model, a decision
rule, or a decision list [Alvarez Melis and Jaakkola, 2018;
Ribeiro et al., 2016a; Datta et al., 2016; Letham et al., 2015].
Suppose we can trace the chain of reasoning of each deci-
sion such an algorithm makes, can we claim the algorithm is
transparent? The answer is unfortunately no. The chain of
reasoning only tells us “how” a decision is made for a given
input but not “that”—the justification that is only accessible
internally. Knowing “how” is not sufficient for justifying that
the decision is made consistently, accurately, reliably, and
validly. Traditional epistemology makes a clear distinction
between “know how” (understand an action) and “know that”
(understand a concept). A learning model is truly transparent
only when we know both “how” and “that”. Unfortunately,
“know that” is often an esoteric exercise and requires years of
training. However, a learning model can provide the insights
into “know that” by the justification of decisions that can be
gauged externally. For example, a transparent model can sup-
ply what evidence supports the decisions, whether it makes
the consistent decisions across the entire distribution, whether
it is more susceptible to adversarial attacks, and whether it
gives away private information.

2 Model Transparency
For any given input, a transparent learning model not only
supplies chains of reasoning such as linear functions, graphs,
lists of rules, but provides the justification of decisions in
terms of accuracy, consistency, reliability, and security. To-
gether the “know how” and “know that” elements of a trans-
parent model serve as a technical-cognitive prosthesis be-
tween human and machine. In this section, we discuss each
element and potential research challenges.

2.1 Transparency—“Know How”
Extensive research has been done to increase the in-
terpretability of different types of classification models.
Letham et. al. (2013) use decision lists to simplify a
high-dimensional, multivariate feature space. Martens and



Provost (2014) define explanation as a minimal set of words
that explains the class membership of a document. Martens
et. al. (2011) propose an assessment for the overall per-
formance of classification models from a user perspective
in terms of accuracy, comprehensibility, and justifiability.
Lim et. al. (2009) examine different types of explanations for
improving transparency of rule based systems. More recently,
Ribeiro et. al. (2016b) present a sparse linear model (LIME)
for local exploration—providing interpretable representation
locally faithful to the classifier. Datta et al. proposed a family
of Quantitative Input Influence (QII) that can be used to mea-
sure the influence of the inputs of a decision making model
on its output [Datta et al., 2016]. These QII measures can be
used to produce transparency reports on the inputs that were
most influential on the model.

In general, the problem of “know how” is to search for a
set of decision objects that is cognitively fluent for human to
follow. This set of decision objects serves as a transparent
substitute for the original complex and possibly black-box
decision model. Given a data collection D and a decision
modelH built on D, a transparent model T can be built from
H consisting of a set of interpretable decision-making ob-
jects R such as decision rules, local linear models, or feature
weights. As a transparent model T has to satisfy two require-
ments: consistency and coverage. First, the set of decision
objects in the transparent model T must faithfully represent
the decision model H. Since statistical reasoning techniques
used to build H and T are likely different, the decisions in-
duced by the two models may be inconsistent for some input.
Therefore, one research challenge is to search for a subset of
decision objects in R that is consistent with H. In addition
to consistency, we also need to consider the coverage of the
decision objects in the transparent model T . An input x is
said to be covered by T if there is at least one decision object
in T that can be applied to x. A transparent model is said to
have a λ-good coverage for any given x if x is covered by T
with a probability of λ. The greater the value of λ, the greater
the coverage. Therefore, the research challenge is to devise a
transparent model with a bounded λ-good coverage for any x
with minimum inconsistency.

Let R = {R1, . . . , Rm} given a transparent model T .
Given an input x ∈ D, the decision d output by H can be
mapped to a subset of R with a probability. Let 1Rs(x)
be a function that returns a boolean vector that indicates
which decision objects in R can be applied to a given in-
put x. If a subset Rs ⊆ R has a boolean value of “1”, x
is covered by Rs; otherwise, x is not covered and the pre-
diction for x is reduced to the class prior. For all exam-
ples {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)} in D, where yi =
h(xi) is the decision made by H for the input xi, the general
optimization problem is as follows:

argmin
Rs⊆R

∑n
i=1 L(T (Rs, xi), yi)

subject to
∑n

i=1 1Rs(xi) ≥ λn

where L is the loss function that measures the inconsistency
between T andH for a given x. The solution to the above op-
timization problem is composed of a subset ofR that satisfies
a predefined coverage with minimum inconsistency.

2.2 Transparency—“Know That”
The internal justification for decisions made by machine
learning models is difficult for end users to grasp. An in-
direct approach to justifying machine-made decisions can be
conceived by enforcing constraints on privacy, reliability, and
fairness. These are commonly raised concerns on legal rights
of individuals (e.g., HIPAA 1996), safety of autonomous ve-
hicles, and fair procedure in credit scoring systems.
Privacy Model transparency can be both beneficial and per-
nicious. While greater transparency in the decision processes
can help users better understand how decisions are reached
inside a machine learning model, it may also introduce and
exacerbate biases and privacy/security risks.

Figure 1 demonstrates one of the potential challenges we
have to face: the trade-off between model consistency and
privacy in the presence of inversion attacks [Fredrikson et al.,
2014]. Recall that consistency measures the extent to which
the transparent model agrees with the original machine learn-
ing model on the prediction for a given x. Inversion attacks
refer to malicious attempts for reverse engineering sensitive
information embedded in the data used to train the machine
learning models.

(a) (b)

Figure 1: Trade-off between model consistency and attack success
rate on the Arrest dataset. α is a hyperparameter that controls the
tolerance for privacy leak.

The two transparency models in the figure are IT-
SVM [Alufaisan et al., 2017] and the BRL transparency
model [Letham et al., 2015], tested on the Arrest dataset [nls,
2017]. For both transparency models the attack success rate
increases as the model consistency grows. The empirical
demonstration reveals one scenario of the potentially con-
flicting objectives: consistency, coverage and privacy protec-
tion. A transparent model with better consistency and cov-
erage may have a higher risk of privacy violation. There-
fore, the research challenge is to find the transparent model
that strikes the right balance between increasing coverage and
consistency and reducing the risk of privacy violation. One
potential solution to this problem is to model the problem
as a multi-objective optimization task and explore multiple
heuristics such as using the weighted sum approach with a
convex combination of objectives to solve the multi-objective
optimization problem.
Reliability Reliability is concerned with the robustness of
a machine model when it faces adversarial attacks. It has
been shown that standard machine learning techniques are



susceptible to adversarial attacks [Goodfellow et al., 2014;
Szegedy et al., 2013; Kantarcioglu et al., 2011; Zhou et al.,
2012; Papernot et al., 2016]. One of the important lines of
attack against standard machine learning techniques is called
evasion attack (e.g., [Dalvi et al., 2004a; Lowd and Meek,
2005a]). In an evasion attack, given a classifier C, an in-
stance (x, y) where x is the feature vector for the instance
(e.g., PDF malware related features) and y is the class value
(e.g., y=‘malware’) controlled by the attacker, x can be mod-
ified to x′ by the attacker such that

argmin
x′

d(x, x′)

subject to x′ ∈ Fy, C(x
′) = t

for a set of feasible instances Fy
1, some domain specific dis-

tance function d, and the target class t (e.g., for a PDF mal-
ware, the target class would be “benign PDF file”). There are
two unique research challenges regarding the robustness of a
transparent model: 1.) whether the existing threat from eva-
sion attacks can be exacerbated by the additional information
provided by the transparent model; and 2.) for successful eva-
sion attacks, how to enhance the transparent models to reduce
the effectiveness of the attacks.

To address the question whether it is possible that a trans-
parent model would make evasion attacks more successful
and reduce the cost of finding x′, we can start by understand-
ing the impact of releasing the set of decision objects R. For
a given instance x, the attacker can find the decision rules in
R that match x and its target class value t. The main research
challenge would be to define appropriate matching function
M such that given x and R, M(x,R) returns a suitable set of
rules that can be used for evasion attacks. A good candidate
of M should also be able to model attackers’ capabilities. If
an attacker can modify some features more easily than oth-
ers (e.g., the number of bytes in a certain section of the PDF
malware can be modified more easily than control flow relate
features), the function M can give more weights to the rules
matching such features. Once we identify the set of match-
ing rules, we can find the minimum perturbation that turns
x to x′. We can use the feature modification costs as a proxy
and define a distance function d(x, x′). The existence of rules
M(x,R) will allow us to find the desired x′ by limiting the
search space and the number of queries that needs to be issued
to the classifier C.

To defend against such attacks, the first step is to explore
whether the existing attack-resilient classifiers (e.g., [Dalvi
et al., 2004b; Lowd and Meek, 2005b; Zhou et al., 2012;
Bruckner and Scheffer, 2009; Bruckner and Scheffer, 2011;
Kantarcioglu et al., 2011]) remain robust against the attacks
given the transparent models. The next step is to explore more
advanced techniques such as modifying rules (e.g., making
them less general), deleting rules (e.g., deleting some rules

1In the case of image processing, if initially x was classified as y
where y= ‘truck’, we may want to find x′ that can be still recognized
as a truck by a human so that the attack may not be captured by the
human eye. In other domains, there may be other constraints. For
example, for a PDF file that contains malware, the attacker may want
to modify the malware in such a way that the modified PDF should
be a valid PDF file.

that are useful in the attacks) or adding some fake rules that
may reduce the effectiveness of the transparency model based
evasion attacks.
Fairness Fairness is concerned with whether a transparent
model is “fair” for a protected or sensitive group. There are
two scenarios to consider: 1.) is the bias in the original deci-
sion model transferable to its transparent counterpart? 2.) is
there a trade-off between transparency and fairness?

Given data X ∈ Rn, labels Y ∈ {0, 1}, and sensitive at-
tributes A ∈ {0, 1}, the goal of fair learning is to predict
outcomes that are accurate with respect to Y but fair with re-
spect to A. The formulation of loss functions often depends
on the definitions of fairness. Below are the common ones:
• Demographic Parity: P (Ŷ = 1|A) = P (Ŷ = 1)

• Equalized Odds: P (Ŷ 6= Y |A = 0, Y = y) = P (Ŷ 6=
Y |A = 1, Y = y),∀y ∈ {0, 1}
• Equalized Opportunity: P (Ŷ 6= Y |A = 0, Y = 1) =

P (Ŷ 6= Y |A = 1, Y = 1)

where Ŷ is the prediction made by a learning model. Let f be
the original model function and g be the transparent counter-
part of f . To learn a fair transparent model, we can consider
an adversarial predictor a that aims to predict the sensitive
attributes. Let LY (f(X), g(X)) be the transparency loss for
mimicking the prediction of Y and LA(a(g(X)), A) be the
adversary’s loss for predictingA given g. To learn a fair trans-
parent model, we can define an objective function that mini-
mizes the inconsistency between f and g while maximizing
the loss for the adversary:

min

∑
x∈X

LY (f(x), g(x))−
∑

x∈X,A

LA(a(g(x)), A)


Existing research [Edwards and Storkey, 2016; Kim et al.,
2019; Madras et al., 2018; Zhang et al., 2018; Beutel et
al., 2017] demonstrates some promising results on de-biasing
learning models. However, it is often the case that a bet-
ter fairness measure is obtained at the cost of model accu-
racy. It is not uncommon that fairness on sensitive group is
achieved through hurting the accuracy on the non-sensitive
group. Therefore, to learn a fair transparent model, the major
research challenge would be to improve fairness without hurt-
ing the normal groups. More importantly, transparent models
should be self-censored so that transparency is not supplied
in a harmful way that can be easily explored by the adversary.

3 Conclusions
In this paper, we address the importance of improving trans-
parency in machine learning models. We discuss what it
means by transparency and what are the major challenges in
the process of making machine learning models transparent.
We propose potential solutions to some of the challenges.
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