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Abstract

Applications of artificial intelligence for wildlife
protection have focused on learning models of
poacher behavior based on historical patterns.
However, poachers’ behaviors are described not
only by their historical preferences, but also their
reaction to ranger patrols. Past work applying ma-
chine learning and game theory to combat poaching
have hypothesized that ranger patrols deter poach-
ers, but have been unable to find evidence to iden-
tify how or even if deterrence occurs. Here for the
first time, we demonstrate a measurable deterrence
effect on real-world poaching data. We show that
increased patrols in one region deter poaching in
the next timestep, but poachers then move to neigh-
boring regions. Our findings offer guidance on how
adversaries should be modeled in realistic game-
theoretic settings.

1 Introduction

Illegal wildlife poaching threatens scores of endangered ani-
mals, from elephants and tigers to turtles and seahorses. The
majority of funds—over 1.3 billion USD each year—invested
to combat the illegal wildlife trade goes towards protected
area management [‘t Sas-Rolfes er al., 2019]. Unfortunately,
the majority of protected areas are still under-resourced, with
too few rangers to patrol these vast lands. Improving the ef-
ficacy of ranger patrols is therefore imperative to protecting
wildlife.

Machine learning and game theory have been leveraged
to prevent poaching, focusing on learning poacher behav-
ior to plan ranger patrols [Gholami er al, 2018]. Dur-
ing these patrols, rangers directly protect wildlife by con-
fiscating snares that would otherwise sit out and trap en-
dangered animals. An indirect impact of patrols to pro-
tect wildlife is through deterrence, reducing the frequency
at which poachers attack in the future. Past work has in-
vestigated deterrence to inconclusive results [Ford, 2017;
Dancer, 2019]. Previous models typically accounted for de-
terrence simply by including past patrol effort as a feature in
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Figure 1: (Left) Map of Uganda, with locations of MFNP and QENP
shown. (Right) Dozens of snares confiscated by rangers.

machine learning models, without specifying any behavior of
the effect of past patrol effort [Xu et al., 2020].

Deterrence is believed to be the dominant means by which
patrols reduce illegal activity [Levitt, 1998], as rangers rarely
apprehend poachers and only remove an estimated 10% of
snares [Moore et al., 2018]. To justify the high cost of ranger
patrols, we should therefore expect a significant deterrence
effect. However, the challenge of demonstrating deterrence
in real-world poaching data remains unanswered.

In this paper, for the first time, we demonstrate measurable
deterrence, where increased patrolling decreases the likeli-
hood of poaching in future timesteps, and also displace-
ment in that poachers move toward nearby regions. Us-
ing real-world poaching data from Queen Elizabeth National
Park (QENP) and Murchison Falls National Park (MFNP) in
Uganda, we study the effect of varying levels of patrol effort
on poacher response.

We find that (a) deterrence can be measured at the one
square kilometer resolution; (b) the amount of patrol effort
in kilometers patrolled determines the strength of the deter-
rence effect, not simply whether or not a target is visited;
(c) ranger observations of illegal activity have the greatest im-
pact, not simply past patrol effort; and (d) increased patrols in
one region cause poachers to become more active in nearby
regions. Our findings help guide future research, both in pre-
dictive modeling and game theory. Specifically, we suggest
that an accurate adversarial behavioral model should account
for past patrol effort in both the individual region and also
neighboring regions.



2 Background

Researchers in both artificial intelligence (AI) and conserva-
tion biology have independently pursued the question: do
ranger patrols deter future poaching activity? Despite these
efforts, most past work have been unable to find strong ev-
idence of deterrence. Inconclusive results have come from
trying to detect deterrence across an entire park or failing to
properly account for the effect of patrol effort. This open
question has important implications on a growing body of
game theory work that aims to accurately model adversarial
behavior.

Past game-theoretic models. A realistic model of deter-
rence is critical both to predict poaching and to design ef-
fective defender strategies. The Al literature has made as-
sumptions of a deterrence effect in their machine learning
and game theory models. Predictive models add past patrol
effort as a covariate, leaving the machine learning algorithm
to freely learn the impact without imposing any constraints
[Gholami e al., 2018; Xu et al., 2020]. On the game theory
side, Yang et al. [2014] models the problem as a Stackelberg
security game by assuming the poachers are reacting to the
rangers’ current action, rather than being deterred by past ac-
tivity. Nguyen et al. [2016] stipulates that poachers’ action
depends on the poacher behavior at the previous timestep, but
not on ranger effort. Fang et al. [2015] provides an adversary
model that responds to a convex combination of the defender
strategy in recent rounds, which generalizes the deterrence
effect.

Park-wide deterrence. Despite a survey of Ugandan vil-
lagers which reveals that increased law enforcement would
be most effective at deterring them from poaching [Harrison
et al., 2015], conservation biologists have acknowledged that
empirically showing deterrence remains a challenging task
[Critchlow et al., 2017; Dancer, 2019]. Dancer [2019] stud-
ies deterrence effects across four protected areas by analyzing
change in patrol effort versus change in catch per unit effort
(observations of illegal activity per kilometer patrolled), look-
ing for deterrence across the entire park rather than within
small regions of the park, as we do here. Dancer finds that
increased patrols deter snare activity in only one of four sites,
with a weak correlation at a one-month timescale. Dobson et
al. [2019] take a similar approach, but conduct analysis only
on synthetic data which prevents us from drawing any con-
clusions from their work.

Region-specific deterrence. A question of particular im-
portance for strategic patrol planning is whether deterrence
can be detected at a finer scale, within a single park. The fol-
lowing literature investigates the impact of patrols on future
likelihood of poaching at the 1 x 1 km or 500 x 500 m reso-
lution. Plumptre et al. [2014] find reduced levels of poach-
ing activity within 8 km of patrol posts. They conjecture
that this spatial pattern demonstrates deterrence, due to the
increased ranger presence in the area, but did not analyze
whether poaching decreases due to increased past patrol ef-
fort. Several others report no clear evidence of deterrence
[Barichievy et al., 2017; O’Kelly er al., 2018].

Two other papers do suggest region-specific deterrence,
but do not properly account for the impact of patrol effort.

Ford [2017] looked at the probability of detecting poaching
as rangers exerted high effort at a region in one month then
low effort the following month, compared it against the prob-
ability of detecting poaching in regions where rangers went
from low effort to high effort. Ford observed that poach-
ing observations decreased in regions where rangers changed
from high to low effort, but that decrease may be explained
by the fact that by exerting low effort, rangers are less likely
to find snares. Conversely, when observing more poaching in
areas that went from low to high effort, that increase may sim-
ply be due to rangers being more thorough in finding snares.
Thus, without accounting for the effect of current patrol ef-
fort, we cannot isolate the effect of past patrols. Moore et al.
[2018] analyze poaching data from Nyungwe National Park
in Rwanda to show that the probability that poaching abates
in a cell increases in areas that rangers have visited more fre-
quently. However, their analysis do not control for differences
in current effort. The rangers may spend more time patrolling
regions that they infrequently patrolled before and hence find
more snares because of higher effort, which could explain the
pattern without suggesting deterrence.

One question that has been overlooked in past work is ex-
ploring where poachers are deterred fo. That is, are poachers
deterred out of the park (thus producing a large-scale deter-
rence effect across the entire park), or are poachers deterred
to other targets in the park? We provide evidence of the latter.

3 Domain

The poaching data we use come from two national parks
in Uganda, Queen Elizabeth and Murchison Falls. They
are home to elephants, hippos, lions, and leopards alongside
other mammals and more than 500 species of birds. Poach-
ers hunt in these parks for both commercial (e.g., elephants)
and noncommercial (e.g., bushmeat for personal consump-
tion) wildlife [Critchlow er al., 2015]. We use patrol data
from 2010-2016.

We divide each park into N targets, each of which is a
1 x 1 km region. We discretize the data both spatially, into
the N targets, and temporally. For the analysis in Section 4.1,
we use three different temporal discretizations: one month,
three month, and one year. For each target at each time step,
we calculate the total ranger patrol effort (measured in kilo-
meters patrolled) and count the number of instances of illegal
activity detected. The patrol effort is constructed from 138.4k
GPS waypoints in QENP and 94.7k in MFNP. Observations
of illegal activity is predominantly in the form of snares, but
can also include bullet cartridges, traditional weapons, or di-
rect encounters with poachers.

Each target is associated with a set of static geospatial
features. These features include distance to park boundary,
roads, permanent rivers, semi-permanent rivers, lakes, towns,
villages, and patrol posts; slope, NPP, and wetness; and an-
imal density estimates of Uganda kob, waterbuck, Jackson’s
hartebeest, topi, African buffalo, African elephant, warthog
and giraffe.
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Figure 2: Relationship between the features, patrol effort, and ille-
gal activity at each target. Attractiveness, current patrol effort, and
past patrol effort directly impact our likelihood of detecting illegal
activity in the current timestep.

4 Analysis

We want to understand the relationship between ranger ac-
tions in the past on poacher behavior in the present. To do
so, we learn the impact of ranger actions in the previous
timestep—first patrol effort in kilometers walked, then num-
ber of snare confiscations—on the number of instances of il-
legal activity detected in the current timestep. In doing so,
we find clear evidence of deterrence in that higher levels of
past patrols reduce the likelihood of poaching, even when ac-
counting for current patrol effort. We also find that more in-
tensive past patrols on neighboring targets increase the like-
lihood of poaching, suggesting displacement.

4.1 Impact of past patrol effort

We learn a logistic model to understand the effect of current
and past patrol effort on poaching activity. We know that
poachers have an underlying preference for poaching spots
based on convenience and their understanding of how likely
a placed snare is to successfully trap an animal. Their pref-
erence can be understood as a measure of relative attractive-
ness between the targets, which is dependent on the geospa-
tial features of each target. We only know about the poaching
activity at targets that we visit. Furthermore, our likelihood
of detecting poaching activity in each time period depends on
the amount of effort that we exert. See Figure 2 for a diagram
of the relationship between each of these aspects. As shown,
the factors that directly influence the probability of detecting
illegal activity in the current timestep are attractiveness, cur-
rent patrol effort, and past patrol effort. Our goal is to learn
the relative influence of each of these factors.

Each target in the park has its own attractiveness value,
which is unknown. We let the attractiveness of each target
be a parameter learned by the model, rather than trying to fit
as a function of the features. Past work has shown that we
can learn good models of poaching likelihood based on the
features [Gholami et al., 2018; Xu et al., 20201, but rely on
complex models. A linear model would not be able to learn
the interaction effects of different features, thus would learn
a significantly inaccurate estimate of attractiveness. For the
purpose of this analysis, we do not care about the individual
attractiveness learned for each target, only their values rela-
tive to the impact of past patrol and current patrol effort. Let
a; be the attractiveness of target ;. We have the parameter 3

Table 1: Learned coefficients, where v = past patrol effort

a; B Y
MFNP
3mo/3mo | —9.284 1.076 —0.162
year/3mo | —9.287 1.062 —0.216
year/year | —8.563 2.159 —0.306
QENP
Imo/lmo | —9.285 1.074 —0.165
3mo/3mo | —10.624 0.685 —0.077
year/lmo | —9.287 1.061 —0.217
year/3mo | —10.629 0.676 —0.042
year/year | —8.559  2.159 —0.306

as the coefficient on current patrol effort, which measures the
detection likelihood, and ~ as the coefficient on past patrol
effort, which measures the deterrence effect we are trying to
isolate. Thus for a park with N targets, we are learning NV + 2
total parameters.

Specifically, we learn using the Adam optimizer [Kingma
and Ba, 2015] the probability of detecting illegal activity in
target ¢ as a linear combination of

a; + B - curr_effort + 7y - past_effort , (D

which is then squashed through the logistic function.

See Table 1 for the learned values of the average attractive-
ness of each target a;, the coefficient on current effort 3, and
the coefficient on past effort . The rows specify the timestep
over which we study this effect. For example, year/3mo looks
at the impact of a year of previous patrol effort on likelihood
of detecting illegal activity in the subsequent three months.
The inputs are normalized, so the coefficient can be inter-
preted as the effect of one standard deviation of effort on
poaching probability, before being squashed by the logistic
function. For example, 5 = 0 indicates the rangers are exert-
ing a historically average amount of effort. To get a sense of
the un-normalized results, we can analyze the standard devi-
ation used to scale the original data. For example, for QENP
3 month, standard deviation of curr_effort was 1.597, and
of past_effort was 1.373.

The learned value of ~, the coefficient on past patrol effort,
is negative across all datasets and settings. Thus, increased
past patrol effort does have a measurable impact on deter-
ring poaching. Note that the attractiveness of each target is
a relatively large negative number. This may seem counter-
intuitive, but 0 in a logistic function corresponds with a 0.5
probability, so negative values simply indicate the probability
of detecting poaching is below 0.5. In practice, observations
of illegal activity are relatively rare, so we expect these val-
ues to be negative. The value @; indicates the average base
attractiveness value. The standard deviation of a; is between
4.34 and 4.98.

4.2 TImpact of past snare confiscation

Just as rangers do not have perfect detection of poachers,
poachers are also unable to perfectly observe the actions of
rangers. In fact, poachers and rangers are unlikely to be



Table 2: Learned coefficients, where p = past illegal activity

a; B P
MFNP
3mo/3mo | —9.283 1.066 —0.134
year/3mo | —9.314 1.086 —0.306
year/year | —8.609 2.290 —0.517
QENP
Imo/Ilmo | —9.285 1.066 —0.135
3mo/3mo | —10.632 0.688 —0.097
year/lmo | —9.312 1.085 —0.307
year/3mo | —10.647 0.693 —0.186
year/year | —8.614 2.291 —0.516

at the same target at the same time. Out of 89,491 patrol
observations over the period from 2010 to 2016 in QENP,
2,063 observations were of poaching activity, and only 111
of those were direct observations of poachers on the ground
(54 of which led to arrests or fines, the remainder being un-
successful pursuits). Based on the rarity of poachers and
rangers being in direct contact, poachers are likely only to
observe patrol effort when the rangers successfully confiscate
a snare. Therefore, we hypothesized that detections of ille-
gal activity—where rangers actually remove snares—would
therefore have a greater impact on deterring poaching in the
next time period.

To test this hypothesis, we repeat our analysis from earlier,
but replace past patrol effort with past detections of illegal
activity. The relationship is therefore

a; + B - curr_effort + p - past_illegal . 2)

The learned coefficients are shown in Table 2. Again, the
coefficient p is negative in all cases, indicating that increased
detection of illegal activity deters future poaching. Further-
more, the values for p are higher when using past illegal ac-
tivity than when past effort. This result confirms our hypoth-
esis that confiscating snares, which poachers will directly ob-
serve, has a greater impact in deterring poaching than simply
walking more during a patrol.

Observe that the effect is strongest when analyzing on a
year-by-year basis. That is, increased patrolling sustained
over an entire year has a stronger ability to deter poaching
compared to increased patrol effort across a single month or
a period of three months.

4.3 Impact of patrolling nearby targets

Ideally, when poachers are deterred by ranger patrols, they
would leave the park completely and desist their hunt of
wildlife. Alternatively, they may move to other areas of the
park. We show that the latter appears to be true.

We study the spatial relationship between neighboring tar-
gets to see whether increased patrolling in one region may
deter poachers toward an adjacent region. To do so, we look
at the cumulative past patrol effort of neighboring targets, us-
ing three spatial resolutions: 3 x 3, 5 x 5, and 7 x 7. Let
past_neighbors be the sum of the past instances of poach-

Table 3: Learned coefficients, with neighbors included

a; i} p n
3x3 | —10.627 0.687 —0.098 0.399
5x5 | —10.634 0.689 —0.096 0.383
7x7 | —10.632 0.689 —0.096 0.562

ing activity on neighboring targets, so we learn

a; + B - curr_effort + p - past_illegal + 7 - past_neighbors
3)

where 7 is the coefficient on past poaching observations on
neighboring cells. See Table 3 for the learned coefficients,
using data from QENP. All values of ) are positive, indicating
that greater past detection of illegal activity on neighboring
areas increases the likelihood of poaching on a target. This
result is consistent across the three spatial resolutions, and
strongest for the narrowest window of 3 x 3. Observe as well
that the values for @;, 3, and - are remarkably consistent,
demonstrating the robustness of our findings.

5 Discussion and conclusion

Our results offer compelling evidence that ranger patrols
are indeed effective at deterring poaching, substantiating the
value of ranger efforts to wildlife conservation beyond the di-
rect effect of removing snares. Additionally, rangers may be
able to spot-patrol to deter poachers from a specific region,
perhaps one that has exceptionally valuable animal habitat.

Our finding that past observations of illegal activity has the
most measurable deterrence effect gives us reason for opti-
mism. Suppose to the contrary that only km of patrol effort
influences deterrence. Accordingly, deterring poachers would
require we hire more rangers to cover more ground. However,
illegal activity implies that we can achieve significant deter-
rence with the same number of ranger resources by focusing
on increasing their effectiveness, specifically targeting areas
that are at higher risk of having snares. Thus, the same num-
ber of rangers at the same cost can have a larger impact on
preventing poaching. This effect is on top of the direct impact
of removing more snares without increasing ranger resources.
Future game theoretic algorithms should ideally optimize for
this result.

Furthermore, the displacement effect that we uncover pro-
vides better insight for modeling adversarial behavior and
does not suggest that ranger patrols are futile in that they sim-
ply move poachers around the park. An open question for
future work would be to more clearly explore the degree to
which deterrence occurs across an entire park, in successfully
pushing poachers out and preserving the biodiversity within
these protected areas.
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