Influence Maximization and Equilibrium Strategies in Election Network Games

Anya Zhang, Andrew Perrault

Center for Research on Computation and Society, Harvard
anyazhang @college.harvard.edu, aperrault@g.harvard.edu

Abstract

Social media has become an increasingly impor-
tant political domain in recent years, especially for
campaign advertising. In this work, we develop
a linear model of advertising influence maximiza-
tion in two-candidate elections from the viewpoint
of a fully-informed social network platform, us-
ing several variations on classical DeGroot dynam-
ics to model different features of electoral opin-
ion formation. We consider two types of candidate
objectives—margin of victory (maximizing total
votes earned) and probability of victory (maximiz-
ing probability of earning the majority)—and show
key theoretical differences in the corresponding
games, including advertising strategies for arbitrar-
ily large networks and the existence of pure Nash
equilibria. Finally, we contribute efficient algo-
rithms for computing mixed equilibria in the mar-
gin of victory case as well as influence-maximizing
best-response algorithms in both cases and show
that in practice, as implemented on the Adoles-
cent Health Dataset, they contribute to campaign
equality by minimizing the advantage of the higher-
spending candidate.

1 Introduction

The impact of various factors on the success of political ad-
vertising has been extensively studied in political science
[Rothschild, 1978; Ridout and Franz, 2011; Fowler et al.,
2016; Wanat, 2020]. A newly relevant question is how the
structure of social networks themselves can inform candi-
dates’ advertising strategies—or more likely, the strategies of
social media giants acting on the behalf of multiple candi-
dates at once. As advertising increasingly shifts away from
traditional media and towards digital platforms built on ex-
isting friendship networks, and as the voter-specific “micro-
targeting” strategies formerly relied on by Google and Face-
book come under scrutiny [Zuiderveen Borgesius et al., 2018;
McCarthy, 20201, network effects may very well become one
of the main ways in which social media companies decide
how to spend the millions of advertising dollars entrusted to
them. Doing so in an equitable and optimal manner for each
candidate is crucial to the health of our democracy.

In this work, we study the problem of competitive influ-
ence maximization—or how agents should advertise to a net-
work of nodes in order to maximize their total influence—in
a two-candidate election using the DeGroot model. Our con-
tributions are as follows: (1) Proposing a new model of elec-
tion network games that enables candidates to spend varying
amounts per voter, accounts for varying levels of voter re-
ceptiveness to each side, and updates using a DeGroot model
over finite time horizons, (2) showing key differences in the
properties of election games corresponding to the margin of
victory and probability of victory objectives and providing
best-response (influence-maximizing) algorithms for both, as
well as an algorithm for computing equilibria in the former,
and (3) demonstrating via simulation how these algorithms
can be used as a decision-support system for fully-informed
companies tasked with allocating budgets for competing can-
didates, and showing that equilibrium outcomes lead to a
fairer democratic process.

2 Related Work

The problem of influence maximization under the indepen-
dent cascade and linear threshold models was first introduced
by Kempe et al. [2003]. Bharathi et al. [2007] showed that
many results extended to the competitive variant, includ-
ing algorithmic tractability through exploiting submodular-
ity. Borodin er al. [2010] explored similar competitive ex-
tensions to the linear threshold model. Also using an inde-
pendent cascade-based model, Clark and Poovendran [2011]
took a game-theoretic approach to competitive influence max-
imization, while Wilder [2018] introduced the election set-
ting, where each of the players represents a candidate who
tries to influence the individuals in the network to support
him/her in the election. The independent cascade and linear
threshold models provide some analytical and computational
tractability through its submodular properties, but they make
the assumption that agents are committed to an opinion once
“activated” once by a peer and are thereafter removed from
influence. While this naturally models one-off purchases and
discrete choices, it does not adequately reflect opinions lying
along a continuous spectrum that shift slowly over time due
to social influences, as argued by Brede et al. [2019].

There exists a parallel literature on network opinion dy-
namics, where nodes update their opinions continuously over
time using either Bayesian models or non-Bayesian rules of



thumb, the most well-studied of which is the DeGroot model
[DeGroot, 1974; Jadbabaie et al., 2011]. The goal of most
work in this area is to study the conditions under which
(voter) opinions converge and how quickly, such as in the
presence of “stubborn” agents or competitors exist [Vial and
Subramanian, 2019; Zhao et al., 2014]. As far as we know,
ours is the first work to study a finite-time symmetric com-
petitive influence game on a DeGroot network with a focus
on learning equilibria for two types of objectives, margin and
probability of victory.

3 Election Model

We consider an election with two candidates A and B and n
voters on a network, assuming a single round of advertising
occurring some amount of time 7' before an election. Our
model thus proceeds in four stages: initial state at time ¢ = 0,
candidate advertising, voter peer updating, and final vote at

t = T. We use the notation 99 to represent node %’s opinion
at time ¢.

1. Initial State: Voters begin with opinions 6; € [0, 1] repre-
senting their likelihood of voting for candidate A.

2. Candidate Advertisement: In the advertisement stage,
each candidate X’s decision variable is the vector Sx > 0,
representing the real number amount they choose to spend
on each voter subject to budget constraints Y Sx < kx.
Given S 4, Sp and additional vector parameters p4 and pp
characterizing the receptiveness of each voter to advertising
from each candidate, voters independently update their opin-

ions from 6; to 0§0) as defined by the following linear pro-
cess. We let px, Sx, be the overall probability that advertis-
ing from X succeeds at reaching voter ¢, so that both voter
receptiveness and candidate expenditures factor into i’s up-
dated opinion. To maintain this interpretation, we also re-
quire that Sx, < 1/px,. We now define a random variable
Y;, such that if only one candidate successfully advertises to
i, Y; switches from 6; to 1 (for A) or 0 (for B). If both or
neither successfully advertise, the effects cancel each other
out and Y; remains at the original opinion 8;. We then set

050) = E(Y;) in order to obtain a deterministic and linear
result for the true updated opinion of i:
01(0) =0, + (1 — Oi)ijSA% — oiijSBj
+ (291' — 1)pA,ipBiSAiSBi~

3. Peer Updates: Given post-advertisement opinions at time
0 and the network’s fixed trust matrix P (where P is row-
stochastic and P;; measures how much ¢ trusts j), the network
updates itself for the next 7" discrete time steps according to
the DeGroot model. Each node’s opinion at each time step is
the trust-weighted average of those of its out-neighbors (in-
cluding itself) at the previous step, and the final opinion state
of the network is given by (1) = PT9(0),

4. Final Vote: From here, nodes cast independent votes as
Bernoulli random variables based on their final opinions HZ(T) R
where a vote of 1 goes to A and 0 goes to B. This stochastic
voting system, rather than a threshold model, is both the most
common in standard election literature and allows for our ul-
timate distinction between the margin and probability of vic-
tory cases. The final number of votes V4 for A is the sum

of the Bernoullis, or a Poisson Binomial distribution with pa-
rameter 8(7). The election outcome is determined by simple
majority (A wins iff V4 > n/2).

4 Margin and Probability of Victory Games

Having fully defined our election model, we proceed
to define two types of election network games based
on objectives commonly studied in election literature:
the Margin of Victory (MOV) game and the Probabil-
ity of Victory (POV) game. Both are defined by agents
{A, B}, action sets {S4,Sp}, and constant parameters
{n7P7 07Ta kAa kB7pAapB}-

Margin of Victory. Inthe MOV game, the objective of can-
didate A (B) is to maximize (minimize) A’s expected margin
of victory E(V4 — V), as in elections based on proportional
representation. By the Poisson Binomial expectation, pay-
offs are given by MOV, = E(V4 — V) =2E(V4) —n =
25" 0" —pand MOV = E(Vp — Vi) = —MOVi4.
Dropping unnecessary constants, the MOV objective for can-
didate A is simply maximizing E (V).

Probability of Victory. In the POV game, the objective of
candidate A (B) is to maximize (minimize) A’s probability
of earning the majority P(V4 > n/2) regardless of by how
large a margin, as in winner-take-all elections such as the US
Presidential election. Using the Poisson Binomial CDF, pay-
offs are given by

POV, = P(V4 >n/2)
n/2

S-S [T a0
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and POV = P(V4 < n/2) = 1 — POVy,, where Fy
is the set of subsets of our n nodes of size £. Computing
POV, even once, not to mention optimization, requires per-
forming a sum that is exponential in the number of voters.
Thus, we rely instead on the Normal approximation provided
by Hong [2013], assuming n is large enough that the central
limit theorem applies:

LH_M
POV, =P(Va>n/2)=1—-® <20>, (D)

where g is the expected value and o the standard de-
viation of Vy, defined as p = Y., OET), o

2
\/Zi 071 -0D) = \Ju-3. (05“) , and ® is the

standard Normal CDF. By the monotonicity of ®, maximiz-
ntl
ing Equation (1) is in turn equivalent to minimizing QT“
Observe that both games are constant-sum with infinite

strategy sets and continuous payoffs.

Proposition 1. Both the MOV and POV games have at least
one mixed strategy Nash equilibrium.

Proof. Because strategy sets are convex and compact, Glicks-
berg’s existence theorem holds [Fudenberg and Levine,
1998]. However, the same is not true of pure equilibria. ~ [J



Proposition 2. The existence of pure Nash equilibria is guar-
anteed in MOV games, but not POV games.

Proof. The first part follows from Debreu-Fan-Glicksberg
Theorem [Fudenberg and Levine, 1998], because the strategy
set is convex and compact, and the utility function M OVy is
both continuous and quasiconcave (linear) in S 4. To show
the second part, we present a counterexample. Consider the
following 3-node network with a doubly-stochastic trust ma-
trix, such that every node has equal influence, where:
Osz:pBZ[l 0 1]

Let A and B have identical budgets, k4 = kg = 1. We claim
that there are no pure strategy equilibria for the POV game by
reduction to Matching Pennies: if A and B advertise to the
same voter, A wins, and if they advertise to different voters,
B wins. Similar reasoning applies to any possible split of
budgets between the two. (Observe, however, that [0.5, 0, 0.5]
is a pure equilibrium for the corresponding MOV game.) [

Previous work conjectures that POV and MOV amount to
the same thing for large electorates by the Central Limit The-
orem [Hinich, 1977; Coughlin and Nitzan, 1981]. However,
we show that even for arbitrarily large networks, objectives
for the two types of games may differ, illustrating the need
for us to study them separately:

Theorem 1. The margin and probability of victory objectives
may differ for arbitrarily large networks.

Proof. The main idea is that variance plays a key role in POV
games as can be seen from Equation (1). In particular, we can
construct arbitrarily large networks in which a losing candi-
date has a 0 chance of winning the POV game unless he de-
viates from his MOV strategy: For any large N, consider a
network with two components that are entirely disconnected.
Let the first component be of size s = [2F1], and set the
opinions of each node in this component to 0. Let the sec-
ond component be of size N — s, where the nodes can have
arbitrary opinions. If we then pick o and p4 such that the
maximum value of u,(Xp) in the first component is still
less than the minimum w4 (Xp) value in the second com-
ponent, candidate A will never have an incentive to advertise
to a node in component 1 from an expected value perspective
as long there remain nodes to be convinced in component 2.
However, without advertising to at least one member of the
first component (increasing variance), candidate A has a zero
probability of winning the election. We may similarly con-
struct examples in which a leading candidate can increase his
probability of winning to 100% by prioritizing getting [ 23]
nodes to an opinion of exactly 1 (reducing variance) instead
of increasing expected votes overall. O

As we discuss in the following section, this means in prac-
tice that in MOV-based elections, candidates’ best strategies
follow predictable patterns of advertising to the voters most
susceptible to their messaging. On the other hand, in POV-
based elections, both should generally focus on the strongest
supporters of the predicted leading candidate, with the leader
benefiting from shoring up their support and the underdog
from moving as many as possible back towards the middle.

5 Maximizing Influence

For each election network game, we present best-response
algorithms MOV-Oracle and POV-Oracle for maximizing a
candidate’s influence given the actions of the other.
MOV-Oracle. In the MOV case, rewriting the objective
based on the classic DeGroot model and linearity:

T (0 Tp0) _ (0) T
UL S SETIEED S 9P
=0 i=0 j=0 j=0 i=0
=84 -ua(Sp)+a-c,

E(Va) =

defining the influence coefficient vector o« = >~ " Pg, con-

stant vector c = 8 — @ o pp o S, and marginal payoff vector
ua(Sp) =ao [(T—O)opA+(20— Dopaops oS’B}.
Thus, MOV-Oracle 4 is simply the following linear program:

ZSA <ka

This outputs A’s best response given the (potentially mixed,
due to linearity) Sp strategy of her opponent. Our election
model thus allows the MOV influence maximization problem
to be solved in quadratic time.

max S4-ua(Sp), st
Sa

POV-Oracle. We define POV-Oracle 4 to minimize
n+1 n+1
o T M o T M
2 = 2 )
ag

=202

POV-Oracle 4 accepts candidate B’s pure strategy Sp and
generates A’s best response by iterating over fixed guesses
for p1 and either minimizing or maximizing variance based on
how u compares to (n + 1)/2. In particular, if we have some
fixed pu < "T‘H (A is losing in expectation), (2) is maximized

by minimizing Zi(GET))Q subject to our constraint on j:

: _ (T2 () _
Ingn fob —Z(Oi )%, st ZGi =u

K2 7
This is a convex problem with linear constraints, and is thus
solvable using quadratic programming as long as our budget
is sufficient for p to be feasible. Putting our constraints in
terms of the original decision variables yields
2
. 0)
g (e |

[ =0
st. Sp-ua(Sp)=p—a-c
Sa,pa, <1 Vi, ZSAi <kay.
i

If instead p > ”T“ (A is winning in expectation), (2) is max-

imized by maximizing ), (Hl(T) )2. The form of the optimiza-
tion is the same as before, with the direction reversed, and can
still be solved (albeit more slowly) with nonconvex optimiza-
tion methods, such as those offered by Gurobi 9.

Thus, POV-Oracle finds a candidate’s POV influence-
maximizing strategy given the pure strategy of his opponent.
Unlike MOV-Oracle, it cannot handle mixed opponent strate-
gies as input because of the nonlinearity of .



6 Computing Equilibria

Due to the linear structure of the MOV objective, we may
efficiently find equilibria of the MOV game using the Follow
the Perturbed Leader (FTPL) algorithm of Kalai and Vempala
(Alg. 1). Ateach iteration, each player chooses the action that
would have maximized their expected payoff against the uni-
form distribution over all previous opponent actions, which is
equivalent by linearity to best-responding to their opponent’s
expected action using MOV-Oracle. Because of FTPL’s no-
regret guarantee for online linear optimization, neither player
can gain significantly by deviating from their historical ac-
tions after a sufficient number of iterations.

Theorem 2. Uniform distributions over {S%;} and {S%}

form an e-equilibrium with %Z(k“’k”) iterations of FTPL.

Algorithm 1: FTPL(¢)
Initialize X‘A and X%
forr=0...Rdo

Draw py, pp uniformly at random from [0,

S = MOA(ZiZi ua(Sh) + 55 ka)
S = MOB(L 1 ua(S2) + 725, k)
end
return means of {X, } and {X';}

to all zeros

1 ]m

7 Experiments

Our experiments use the National Longitudinal Study of Ado-
lescent to Adult Health Dataset (AHD) [Harris, 2009]. This
dataset is convenient for several reasons, namely including in-
formation on both strength of relationships and demograph-
ics, which we can use as a proxy for political opinion, and
being conducted in a high school setting with dense networks.

Follow the Perturbed Leader (MOV). We run the FTPL
algorithm for a 32-node network, fixing the total budget at
300 and changing its division between the two candidates to
minimize the effects of diminishing returns. Defining single-
round best-response (SBR) to be the algorithm where each
candidate maximizes their own influence using MOV-Oracle
against an opponent budget of O (essentially, optimization
with no knowledge of the opponent’s strategy), we then plot
A’s expected margin of victory using FTPL against that using
SBR. To compare the relative equity of the two algorithms,
we borrow the concept of the Budget Multiplier from Goyal
et. al. [2019], which measures the extent to which the wealth-
ier player’s final payoff exceeds their initial share of the bud-
get, or %8“?‘ X Z—; in our case, where kx > ky. In the
resulting graph (Fig. 1), we can clearly see that FTPL gives
a slight advantage as compared to SBR to the candidate with
a lower budget, which translates to a strictly lower Budget
Multiplier for FTPL than for SBR except for when the divi-
sion of budgets is exactly equal. In other words, computing
equilibrium strategies using FTPL serves to level the playing
field. We also see that FTPL is far more efficient than the
upper bound given by Theorem 2, converging in only about a
dozen iterations even for n = 64, £k = 300, ¢ = 0.1.
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304 ¥ FTPL
SBR
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Figure 1: Left and Middle: Candidate A’s utility and Budget Multi-
plier using FTPL and SBR for various divisions of total budget 300
between ka4 and kp averaged across randomly chosen subsets of
n = 32 nodes of the first 50 AHD networks, with e = 0.1, T" = 10,
and initial opinions correlated with sex. Using FTPL always leads
to a weakly lower Budget Multiplier than SBR. Right: Varying both
n and k, observe that FTPL converges quickly in practice.

Alternating Best Response (POV). To find pure Nash
equilibria in the probability of victory game, we devise an
alternating best response algorithm that restarts randomly as
soon as a cycle is detected and stops when an e-equilibrium
is found. This algorithm performs well for our test of up to
n = 50 nodes, converging a majority of the time in less than
10 iterations and only occasionally taking long detours as a
result of cycles (Fig. 2). However, as the number of nodes in-
creases, the optimization problem required for each iteration
also takes longer to complete, especially in the nonconvex
case when the candidate of interest is predicted to win.
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Figure 2: Results of alternating best response applied to AHD net-
work 1 with ¢ = .01, budgets k4 = 20 and kg = 30, T = 5,
and initial opinions correlated with sex. The image on the left shows
the number of iterations required for the algorithm to converge, and
the image on the right shows average runtime per optimization, of
which each iteration was allowed at most 40. We see that, for the
most part, alternating response converges in very few iterations, and
that long convergence periods are related to the presence of cycles.

Conclusion. Our results show that the properties of so-
cial networks make them a tractable alternative to individual-
focused strategies for electoral advertising, especially in pro-
portional representation elections. We hope that, in particular,
the existence of efficiently computable equilibria in election
games and their dampening effect on imbalances in campaign
spending argues this model is worthy of further investigation.
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