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Abstract
Rapid damage assessment after natural disasters is
crucial for effective planning of relief efforts. Satel-
lites with Very High Resolution (VHR) sensors can
provide a detailed aerial image of the affected area,
but current damage detection systems are fully- or
semi-manual which can delay the delivery of emer-
gency care. In this paper, we apply recent advance-
ments in segmentation and change detection to de-
tect damage given pre- and post-disaster VHR im-
ages of an affected area. Moreover, we demon-
strate that segmentation models trained for this task
rely on shadows by showing that (i) shadows in-
fluence false positive detections by the model, and
(ii) removing shadows leads to poorer performance.
Through this analysis, we aim to inspire future
work to improve damage detection.

1 Introduction
According to the National Centers for Environmental Infor-
mation (NCEI), the United States has sustained 241 natural
disasters since 1980 with cumulative costs exceeding $1.6
trillion. During 2018 alone, the U.S. was impacted by 14
separate billion-dollar disaster events ranging from tropical
cyclones to storms and wildfires. Moreover, the number and
cost of disasters have seen a surge over time due to the in-
creasingly pronounced impact of climate change on the fre-
quency of the most extreme events. The past three years
(2016-2018) have been especially active with the annual av-
erage number of billion-dollar disasters more than doubling
the long-term average [Smith, 2019].

Although natural disasters have increased in volume and
costliness, damage detection systems have not evolved as
quickly. Current damage detection systems typically rely on
manual segmentation of satellite maps by teams of volunteers
(e.g., Tomnod), meaning they can be costly, slow, and error-
prone. This necessitates development of an automated system
that can provide government officials and emergency relief
agencies with an accurate damage map of the afflicted areas.

2 Related Work
One of the most popular tasks in remote sensing is building
footprint segmentation which has inspired competitions like

Model Data F1 score IoU
Multi3Net VHR post 0.54 0.37
Multi3Net VHR EF pre-post 0.61 0.44
UNet post 0.58 0.41
UNet EF pre-post 0.77 0.63
FuseNet pre-post 0.79 0.65
Siamese-Diff pre-post 0.76 0.62
Siamese-Conc pre-post 0.81 0.68

Table 1: Performance metrics for damage segmentation networks.

DeepGlobe [Demir et al., 2018] and SpaceNet [Etten et al.,
2018]. Encoder-decoder convolutional architectures such as
SegNet [Badrinarayanan et al., 2015], UNet [Ronneberger et
al., 2015] and modifications thereof with more powerful en-
coders such as ResNet [He et al., 2015] have been consis-
tently ranked as the best-performing solutions to these chal-
lenges [Rudner et al., 2018]. Damage segmentation is sim-
ilar to building footprint segmentation, but requires specify-
ing damaged structures and building ruins as well. [Rudner et
al., 2018] introduced Multi3net for flood damage segmenta-
tion from multi-temporal medium- and very-high-resolution
maps which relies on an encoder-decoder network with a
ResNet backend and additional pyramidal context aggrega-
tion modules modeled after the PSPNet architecture [Zhao
et al., 2017]. The xView2 challenge and xBD dataset re-
cently supported further development in this area [Gupta et
al., 2019]. In fact, the xBD dataset is the largest building
damage assessment dataset prepared so far, containing around
700, 000 building annotations across over 5, 000 km2 of im-
agery from 15 countries and 7 disaster types.

Change detection methods are also highly relevant for ef-
ficiently integrating pre- and post-disaster information into
the model. [Hazırbaş et al., 2016] integrates the additional
depth channel into segmentation models in RGB-D imagery.
[Daudt et al., 2018] introduced fully convolutional Siamese-
Difference networks for change detection in satellite imagery.
This architecture uses a shared encoder through which both
pre- and post-disaster images are passed through. The de-
coder continues with post-disaster input yet still receives pre-
disaster data through skip connections which are generated
by subtracting activations before downsampling pre-disaster
images from post-disaster images. Also introduced in [Daudt
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et al., 2018], Siamese-Concatenation networks are designed
similarly to Siamese-Difference networks, except while cre-
ating skip connections, activations of convolutional blocks
are concatenated.

3 Baseline Results
We trained and tested [Hazırbaş et al., 2016] and [Daudt et
al., 2018] in addition to Early Fusion (EF), in which we con-
catenate pre- and post-disaster RGB images in the color chan-
nel, effectively feeding in a 6-channel input to the model.
While training the Siamese models above, we used the orig-
inal UNet layers since our dataset was larger than that used
by the authors. The network was initialized with standard
weights sampled from the standard Normal distribution and
trained using the Adam optimizer [Kingma and Ba, 2014]
with a learning rate of 10−2. The training set was augmented
with random rotations and flips. Batch normalization [Ioffe
and Szegedy, 2015] was used, with a batch size of 10. We
used a weighted cross-entropy loss function with weights to
account for class imbalance.

The results of these initial baselines are provided in Table
1. The F1 score of Siamese-Concatenation is comparable to
the recent results using xBD data [Weber and Kané, 2020;
Gupta and Shah, 2020], though we have focused on detecting
damage or no damage only, rather than specific granularities
of damage as in these recent papers. As we looked for ways
of improving on these promising results, we found that there
were several false positive examples involving shadows (such
as in Fig. 2). We limit the following discussions to Siamese-
Concatenation due to its superior performance, though quali-
tatively, architectures such as UNet, UNet EF, and Multi3Net
VHR also reacted to shadows.

4 Shadows
Because satellite imagery is not always captured in perfect
settings (e.g., at noon when the sun is high), shadows are of-
ten present [Dare, 2005]. The influence of shadows is even
more pronounced in datasets such as xBD where satellite im-
ages in each pair are sometimes taken at different times and
sun elevation angles [Gupta et al., 2019]. In fact, in [Dare,
2005], the author states that, “From the earliest days of aerial
photography, the effects of shadowing have been utilised to
highlight ground features in applications such as archaeology
and aerial reconnaissance. However, more often than not,
shadows are considered a nuisance obscuring important ob-
ject space detail.” In the domain of disaster detection, we are
dealing with both pre- and post-disaster images, and we have
further noticed the presence of shadows may lead to false pos-
itive results, as shown in Fig. 2, so we may think of this as
a nuisance and try to remove shadows as in [Dare, 2005].
There was also recent success in considering the removal of
such features from water in Sea-thru [Akkaynak and Treibitz,
2019]. We therefore sought to improve our results through the
use of shadow removal, consisting of several different prepro-
cessing methods as an initial proof-of-concept.

To see the effect of removing shadows, we replaced shad-
ows near some false positives manually with nearby pixels
(e.g. colorpicking). In nearly all images, as seen in Fig. 2, we

Tsunami Hurricane Flood Fire Tornado
Train Orig Orig Orig Orig Orig
Orig 0.76 0.84 0.78 0.78 0.85
NS 0.75 0.81 0.66 0.75 0.81

Quake Volcano All All
Train Orig Orig Orig NS
Orig 0.77 0.74 0.81 0.10
NS 0.74 0.64 0.75 0.90

Table 2: F1 scores of Siamese-Conc for original (Orig) and no
shadow (NS) test images, trained according to the train set rows.
Quake is short for Earthquake.

found that preprocessed regions were no longer detected as a
false positive. However, in some instances such as rows 3, 4
of Fig. 2, removal of shadows near certain structures led to
false positives in other regions, even those not touched during
manual editing. This led us to hypothesize that shadows must
help convolutional models such as Siamese-Concatenation to
detect buildings. Indeed, the new large false positives of our
model do not look random at all: viewed perpendicularly
from above, these brown-gray regions resemble real build-
ing roofs. What leads a human to distinguish these regions
from buildings is perhaps an accurate sense of camera angle,
which can be deduced from nearby buildings as well as shad-
ows. The model may have learned to look for similar cues.

To test this hypothesis more rigorously, we automatically
detected shadows and inpainted them using a combination
of thresholding, Fast Marching Algorithm [Telea, 2004], and
distance transformations [Borgefors, 1986]. Table 2 shows
results both from training on the original or shadow-removed
versions of the train set, then testing on the original or
shadow-removed versions of the test set. On the shadow-
removed test dataset (NS Test), the model trained on the orig-
inal train set (Orig) performed worse both overall and across
disaster types. In the model trained on the shadow-removed
train set (Overall, NS), we suspect that the model learned to
depend on the shadow inpaintings, leading to excellent per-
formance on the shadow-removed test set and poor perfor-
mance on the original test set. This problem could perhaps
be alleviated by using a shadow detection algorithm such as
[Kwatra et al., 2012]. To further confirm the model’s de-
pendence on shadows, we observed changes in the activa-
tions of different encoder filters after shadow replacement
(Fig. 1). We therefore hypothesize that although removing
a shadow may help in some cases, overall, it seems that the
shadows may actually provide an important cue to Siamese-
Concatenation, similar to what [Dare, 2005] also alludes to.

5 Vision
We believe that being able to help first responders to respond
more quickly to disasters is an important area of future work,
and that the use of satellite imagery and computer vision
could play a role in this. We further believe that shadows may
have a role to play in improving existing algorithms and de-
serve further investigation going forward. Two ideas for this
are as follows: (i) modify the model itself to emphasize and
refine shadow detection, and (ii) augment shadows in images.



Figure 1: Activations of the network.
The first row consists of the activations of the original image while the second one correspond to the shadow-removed version.

Figure 2: Response of class predictions to replacement of shadows.
a) pre-disaster image b) post-disaster image c) shadow replaced (pre or post) d) target e) original prediction f) shadow replaced prediction

Yellow highlight denotes false positives and cyan false negatives.
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Domokos, and Daniel Cremers. Fusenet: Incorporating
depth into semantic segmentation via fusion-based cnn ar-
chitecture. 11 2016.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift,
2015.

[Kingma and Ba, 2014] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization, 2014.

[Kwatra et al., 2012] Vivek Kwatra, Mei Han, and
Shengyang Dai. Shadow removal for aerial imagery

by information theoretic intrinsic image analysis. In
2012 IEEE International Conference on Computational
Photography (ICCP), pages 1–8. IEEE, 2012.

[Ronneberger et al., 2015] Olaf Ronneberger, Philipp Fis-
cher, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI
2015, page 234–241, 2015.

[Rudner et al., 2018] Tim G. J. Rudner, Marc Rußwurm,
Jakub Fil, Ramona Pelich, Benjamin Bischke, Veronika
Kopackova, and Piotr Bilinski. Multi3net: Segmenting
flooded buildings via fusion of multiresolution, multisen-
sor, and multitemporal satellite imagery. In Proceedings
of the Thirty-Third AAAI Conference on Artificial Intelli-
gence (AAAI-19), 2018.

[Smith, 2019] Adam B. Smith. 2018’s billion dollar disasters
in context. 2019.

[Telea, 2004] Alexandru Telea. An image inpainting tech-
nique based on the fast marching method. J. Graphics,
GPU, Game Tools, 9:23–34, 2004.
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Building disaster damage assessment in satellite im-
agery with multi-temporal fusion. arXiv preprint
arXiv:2004.05525, 2020.

[Zhao et al., 2017] Hengshuang Zhao, Jianping Shi, Xiao-
juan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene
parsing network. CVPR 2017*, 2017.


	Introduction
	Related Work
	Baseline Results
	Shadows
	Vision

