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Abstract
India accounts for 11% of maternal deaths globally
where a woman dies in childbirth every fifteen min-
utes. Lack of access to preventive care information
is a significant problem contributing to high ma-
ternal morbidity and mortality numbers, especially
in low-income households. We work with ARM-
MAN, a non-profit based in India, to further the
use of call-based information programs by early-
on identifying women who might not engage on
these programs that are proven to affect health pa-
rameters positively. We analyzed anonymized call-
records of over 300,000 women registered in an
awareness program created by ARMMAN that uses
cellphone calls to regularly disseminate health re-
lated information. We built robust deep learning
based models to predict short term and long term
dropout risk from call logs and beneficiaries’ demo-
graphic information. Our model performs 13% bet-
ter than competitive baselines for short-term fore-
casting and 7% better for long term forecasting. We
also discuss the applicability of this method in the
real world through a pilot validation that uses our
method to perform targeted interventions.

1 Introduction
In a 2017 report on maternal mortality [4], the World Health
Organization (WHO) estimated a total of 295,000 deaths
worldwide and India accounts for nearly 12% of these deaths.
India, with a population of over a billion, has an estimated
maternal mortality ratio of 145 (maternal deaths per 100,000
livebirths). Majority of these deaths are preventable and are
accounted to information asymmetry. There is immense po-
tential to leverage ICTs to mitigate pregnancy related risks
and improve maternal health by closing information gaps.

One of the major contributory factors for preventable ma-
ternal deaths is delay in getting adequate care. The three
delay model [6] proposes that maternal mortality is associ-
ated with three phases of delay. The first is in deciding to
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seek care which is influenced by various factors involved in
decision-making such as socio-cultural factors, individual or
family’s understanding of complications and risk factors in
pregnancy, and financial implications. The second delay is
in physically reaching an adequate healthcare facility due to
availability and accessibility constraints. The third delay is
associated with the availability of trained healthcare profes-
sionals, supplies and equipment to provide adequate care.

Socio-economic context of a person plays a critical role
in determining maternal and child mortality parameters.
The decision to seek care could be significantly impacted
with a broadened access to information on reproductive
health. Many organisations have begun using digital tools
for improving health related awareness and care to pregnant
women. ARMMAN, a non-profit organization based in Mum-
bai works on bridging this gap through their program mMi-
tra, which has catered to over 2 million women. mMitra is a
free mobile voice call service that sends timed and targeted
preventive care information directly to the phones of the en-
rolled women in their chosen language and time slot. A series
of 141 individualised voice messages of 60-120 seconds are
sent with different frequencies at different stages throughout
the course of pregnancy and up to 12 months after child birth.

The program witnesses a significant dropout rate owing
to a number of reasons grounded in their socio-cultural con-
text through community health practices, lack of information,
misinformation, etc. Programs such as mMitra strive to in-
crease maternal health parameters and we recognize the value
of identifying and providing timely and relevant interventions
to assure program retention. Interventions include providing
reminders through missed calls, personalized health consul-
tation based on the projected risk of dropping out. Given the
limited resources with non-profit organizations such as ARM-
MAN, there is value in providing predictive modeling services
to identify women who have a higher chance of dropping off
from these health programs.

Our contributions are two fold. First, we consider the prob-
lem of forecasting women dropping out based on past engage-
ment with the voice call program. We formulate this task as
a supervised learning problem and build deep learning based
models that are trained on previous call-related data of over
300,000 beneficiaries to accurately predict the risk of disen-



gagement. Second, we discuss the deployment of our models
as a pilot study to show the effectiveness of our methods in
the field.

2 Data Description
During registration of women to the mMitra program, demo-
graphic data such as age, education level and income group
is collected. Further, during the course of the program, every
call to a beneficiary is logged. The dataset collected by AR-
MMAN contained data for all the beneficiaries registered in
2018 and their call records until October 2019. This includes
70,272,621 call records for 329,489 women. Given the sen-
sitivity of the healthcare domain, all the data analyzed was
fully anonymized before we further processed it. The impor-
tant features of the data considered for our work are discussed
below.

Beneficiary details. This is collected at the time of reg-
istration from all beneficiaries. The important demographic
information we considered include age, education level, and
income group. We also used other information such as regis-
tration date, gestation age at the time of registration, preferred
call slot of the day, language of communication and the owner
of the phone.

Call logs. The call logs contain the details for all the calls
made to every registered beneficiary. Each entry has details
of an individual call: message ID, date of call, call duration
and information regarding whether the call was successfully
connected. As the message content of each call depends on
the beneficiary’s gestation age at the time, we use the message
ID as a proxy for the beneficiary’s gestation age.

It is important to note that all the calls attempted to a bene-
ficiary do not necessarily go through. Connection failure can
be attributed to two causes: (1) network failure; and (2) if a
beneficiary fails to answer the call. While this information on
the cause of connection failure could be beneficial for build-
ing predictive models, it is not available in the call records.
Another feature of the dataset that contributes to its volume
is that there are up to two retries for every call that results in
a connection failure. We consider the best outcome (longest
call duration) for each message. This results in a reduction in
size to 27,488,890 call records.

For all further discussion, we will use the following termi-
nology. Attempt is when a call is attempted to a beneficiary.
When an attempted call is answered by the beneficiary, it is
called a connection. A connection with call duration of at
least 30 seconds is called an engagement.

3 Short term drop-off prediction
Tracking women who are likely to disengage for an extended
period of time based on their past engagement behaviour is
very important in mitigating the risk of dropping off. The
health care worker can intervene with women who are at risk
of dropping off the program by providing reminders in the
form of phone calls or by even reaching out to them individ-
ually. We, therefore, build models that predict if a woman
would not answer any calls for the next two weeks given the
call history of past 4 weeks and demographic information.

Problem Formulation For each beneficiary registered in
the program, we randomly sample call sequences spanning
six weeks to build our dataset. The data from the first four
weeks are used as input features and data from the final two
weeks are used to generate the label. If there are no engage-
ments in the two week prediction period, we label the data
as high risk, else it is labelled as low risk. To gener-
ate a batch for one training iteration, we sample these se-
quences from the call logs dataset. We removed the beneficia-
ries whose demographic features were not complete or were
entered in an incorrect format. Additionally, we computed six
features from the call logs: number of past attempts, number
of past connections, number of past engagements, days since
last attempt, days since last connection and days since last
engagement.

Figure 1: CoNDiP (left) and ReNDiP (right) Architectures

Models We used random forest model over static demo-
graphic features as the baseline model. The random forest
model consisted of 200 trees with maximum depth 10. In
order to fully utilize the static demographic features and the
available time-series data of the call histories, we build two
neural networks called CoNDiP (Convolutional Neural Dis-
engagement Predictor) and ReNDiP (Recurrent Neural Dis-
engagement Predictor).

CoNDiP uses 1D Convolutional [2] layers to encode the
dynamically sized call history features. Since, over the span
of 4 weeks at most 8 calls are made to a beneficiary (atmost
2 calls per week), we append call sequences with fewer calls
with zeroes and feed it to the 1D convolutional layers.

In CoNDiP, each convolutional layer has 20 kernels of size
3 and there are two convolutional layer after which we do
average pooling as follows. Let fi,j be the value of ith feature
of jth call in the output from the 1D convolutional layers.
We do average pooling of these features across time to get
features f̂i =

∑
j∈[T ] fi,j

T .
We also encode the static features via two feed forward lay-

ers with 50 and 100 neurons. Let g be vector of encoded static
features output by the feed forward layer. Then, we concate-
nate g and f̂ and feed it through two feed forward layers each
with 100 neurons followed by a final layer to compute the



probability of being at risk. After each of the feed-forward
layers (except last one), we applied batch normalization.

We also experiment with encoding time-series data with
recurrent layers instead of convolutional layers. By replac-
ing the 1D convolutional layers and average pooling with an
LSTM [1] whose output from the last time-step is taken as
input to final feed forward layer, we get ReNDiP (Recurrent
Neural Disengagement Predictor). We used a bi-directional
LSTM with 100 hidden units. The architectures of CoNDiP
and ReNDiP are shown in Figure 1.

Model Accuracy Precision Recall F1 score
RF 0.70 0.71 0.72 0.71
CoNDiP 0.83 0.84 0.85 0.83
ReNDiP 0.81 0.83 0.83 0.81

Table 1: Results for Short-term engagement task. RF: Random For-
est

Figure 2: ROC curve and area under the curve (in legend) for the
models for short-term engagement task

Results The results of our models and baseline are summa-
rized in Table 1. CoNDiP and ReNDiP show similar perfor-
mance scores and clearly outperform the random forest base-
line. Due to slightly higher scores, CoNDiP is the model best
suited for prediction of short-term program engagement. The
ROC curves are shown in Figure 2. AUC scores of our mod-
els are much higher than that of random forest baseline.

4 Long term drop-off prediction
We next focus on the more ambitious goal of identifying
women who are at a high risk of dropping out of the pro-
gram based on their engagement behaviour in the first two
months from registration. These predictions can help identify
beneficiaries who require more involvement from health care
workers, and plan for long-term interventions such as provid-
ing access to counselors.

Problem Formulation Predicting program drop-off re-
quires us to consider a longer period of time for generat-
ing labels, we generate labels that disentangle the effect of
connection failure by considering the ratio of engagements

to connections. Note that considering this ratio without set-
ting constraints on the number of connections will introduce
noise in the labels. After calculating the ratio, we define a
risk threshold that helps us binarize the ratio into high risk
and low risk. For example, if a beneficiary has engaged 5 out
of the 15 times that the connection was successful, the en-
gagements to connections ratio is 0.33 and on binarizing this
with a risk threshold of 0.5, the beneficiary is labelled high
risk.

We also consider the fraction of attempted calls that suc-
cessfully connect in order to identify beneficiaries that are
likely to disengage due to the small fraction calls they re-
ceive. Hence, we formulate an additional problem to identify
beneficiaries that are less likely to connect regularly in the
program. We generate labels by computing the connections
to attempts ratio and using a risk threshold to binarize the data
into low and high risk classes.

In the engagement risk classification, we consider benefi-
ciaries that have atleast eight months of call logs available.
We use the first two months for calculating input features and
the rest of the call logs for generating the labels. We addition-
ally require that a beneficiary has a minimum of 24 connec-
tions in the prediction period. Our final dataset contains data
for 85,076 beneficiaries.

In the connection risk classification, we consider all the
beneficiaries that have at least eight months of call logs avail-
able and at least 24 attempts were made. For this task, our
dataset contains data for 162,301 women. We consider a risk
threshold of 0.25 in this formulation. This means that only
beneficiaries with a connections to attempts ratio of less than
0.25 will be considered high risk. This task, though signif-
icantly more challenging, can help identify beneficiaries that
have very low likelihood of connection.

Models We used the same models, training process and
evaluation procedure as the previous formulation. In the
CoNDiP architecture, we reduced the number of feed forward
layers for encoding static features to 1 layer with 12 units.
Each convolutional layer has 8 filters of size 3. There is 1
feed forward layer of 10 units after concatenating both the
static and dynamic feature encodings. The same architecture
is used for both engagement risk classification and connection
risk classification. For the random forest, we used 100 trees
with a maximum depth of 10. In the ReNDiP architecture, we
encode the static features by using a feed foward layer of 12
units. We reduce the number of units to 8 in the LSTM layer.
The concatenated static and dynamic encodings are fed to a
feed forward layer of 10 units. We also limit the maximum
number of calls considered in the input period to 18 (2 calls
per week on average for 60 days).

Model Accuracy Precision Recall F1 score
RF 0.73 0.73 0.73 0.72
CoNDiP 0.75 0.75 0.75 0.75
ReNDiP 0.76 0.76 0.76 0.76

Table 2: Results for long-term engagement task, RF: Random Forest



Model Accuracy Precision Recall F1 score
RF 0.69 0.69 0.70 0.69
CoNDiP 0.69 0.69 0.71 0.70
ReNDiP 0.70 0.69 0.71 0.70

Table 3: Results for long-term connection task, RF: Random Forest

Figure 3: ROC curve and area under the curve (in legend) for the
models for long-term engagement task

Results The results for engagement risk classification task
and connection risk classification task are summarized in Ta-
ble 2 and Table 3 respectively. For engagement risk classifi-
cation, we see that ReNDiP and CoNDiP perform better than
the baseline in terms of accuracy with ReNDiP performing
the best. However, for the connection risk classification task,
we see that all three models perform similarly.

The ROC curves for both the tasks are shown in Figure
3 and Figure 4. ReNDiP’s AUC is slighly better than the
baseline whereas CoNDiP’s is worse. It is clear that for long
term prediction tasks, ReNDiP is the best suited.

5 Deployment study
We developed an easy-to-use dashboard for health workers to
visualize predicted risk of drop-off. We piloted our long term
drop-off prediction model and the dashboard app on benefi-
ciaries registered in November 2019. This included 18,766
beneficiaries. However, only 17,288 beneficiaries had at least
8 attempts made to them in the first 60 days.

Using ReNDiP to study the relevance of the predictions,
we gathered the available call data for these beneficiaries, re-
moved the call logs of the first 60 days (as they were used to
build input features) and calculated the engagement to con-
nection ratio for each beneficiary. To correctly analyse the
performance of the model, we set a threshold for number
of connections (to discount beneficiaries with fewer connec-
tion). The results are summarized in Table 4.

We consider thresholds of 5, 10 and 15 to understand how
the model’s predictions hold with different estimates of bene-
ficiary behaviour. We observe that the model performs much
better than it did during training phase, partly due to a change
in the underlying data distribution. There was a greater pro-
portion of low risk beneficiaries in the pilot study and as
the model is better at predicting low risk beneficiaries, the

Figure 4: ROC curve and area under the curve (in legend) for the
models for long-term connection task

MC Accuracy Precision Recall F1 score
5 0.79 0.80 0.79 0.79
10 0.81 0.82 0.81 0.81
15 0.84 0.85 0.84 0.84

Table 4: Results for long-term engagement task in pilot study. MC
stands for minimum connections.

model’s performance becomes better. We also observe that
the performance increases as we have better estimates of the
beneficiaries behaviour. It is also important to note that low
risk beneficiaries are more likely to have greater number of
connections. This may explain the increasing performance
with an increase in ’minimum connections’ threshold. To
ensure that the results are independent of any behavioural
changes that may have been caused by SARS-CoV-2 pan-
demic, we separately analyse the call logs until 10 March
2020 as pre-pandemic period. The results for this analysis
are summarized in Table 5.

MC Accuracy Precision Recall F1 score
5 0.81 0.81 0.81 0.81
10 0.85 0.84 0.85 0.85

Table 5: Results for long-term engagement task in pre-pandemic
period. MC stands for minimum connections.

6 Discussion
We have successfully built robust models to aid health care
workers in NGOs such as ARMMAN to identify women at
risk of dropping out of call-based health awareness service.
Leveraging call history data collected from the past we have
built deep-learning models that provide 85% and 76% recall
for short term and long term prediction tasks respectively.

As part of our future work, we aim to find the important set
of features that lead to the predictions that our model outputs
using interpretation techniques like [5, 3]. We would utilize
data from effects of ad-hoc interventions based on our model
to help predict the right intervention or sequence of interven-
tions using reinforcement learning approaches.
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