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Abstract
We propose a novel testing and containment strategy
to limit the spread of SARS-CoV2 while minim-
ising the impact on the social and economic fabric
of countries struggling with the pandemic. Our ap-
proach recognises the fact that testing capacities in
many low and middle-income countries (LMICs)
are severely constrained. In this setting, we show
that the best way to utilise a limited number of tests
during a pandemic can be found by solving an al-
location problem. Our problem formulation takes
into account the heterogeneity of the population and
uses pooled testing to identify and isolate individu-
als while prioritising key workers and individuals
with a higher risk of spreading the disease. In order
to demonstrate the efficacy of our strategy, we per-
form simulations using a network-based SIR model.
Our simulations indicate that applying our mechan-
ism to a population of 10, 000 individuals with only
1 test per day reduces the peak number of infected
individuals by approximately 27%, when compared
to the scenario where no intervention is implemen-
ted, and requires at most 2% of the population to
self-isolate at any given point.

1 Introduction
Our work sets out a new testing and containment strategy to
limit the spread of COVID-19 while minimising the impact
on the social and economic fabric of countries struggling with
the pandemic. In LMICs, testing resources for viral infections
are often extremely scarce.1 At the same time, testing is an
essential tool for combating epidemics, as it provides crucial
estimates of virus prevalence and allows for the identification
of asymptomatic and symptomatic infected individuals, which
forms the basis of many containment policies. In settings
where comprehensive individual testing is infeasible, radically
new testing policies are needed to maximise the reach of an
extremely limited number of tests. Mexico, for instance, only
has the ability to conduct up to 72 tests per day per one million
inhabitants (as of 6 July 2020). [13]

1Testing is constrained by many factors including manpower,
laboratory equipment, availability of reagents, and logistics.

Work in the testing literature has largely focused on determ-
ining the number of tests required to execute a given testing
and containment strategy. Turning the problem on its head, we
instead consider the problem of identifying a mechanism that
maximises the benefit of a fixed weekly testing budget. Our
approach [7] treats this challenge as a resource allocation prob-
lem aimed towards minimising infection while mitigating the
effects of state-organised containment measures on personal
well-being and the economy. The heterogeneous strategy we
propose classifies individuals according to their exposure to
the virus and their cost of containment. The latter can refer to
social cost, e.g. a healthcare worker who by self-isolating is
unable to perform essential duties, or financial cost, similar
to [10]. Using this classification, our approach performs a
series of group tests and subsequently isolates all individuals
contained in groups that test positive while allowing the other
individuals to resume social and economic activities.

In group testing, multiple samples are pooled into a single
test to learn whether any given person in the pool is infected
or, more informatively, if none are infected. There exists a
substantial literature on group testing in the Computational
Learning Theory community [1–4, 15] and the underlying
method has also been applied in the fight against HIV and
other diseases [11, 14]. Group testing has been verified experi-
mentally [16] and has been proposed as possible way towards
testing large parts of the population [6]. One of the most
compelling benefits of group testing is its ability to amplify
the reach of a limited number of tests to be able to test more
people. A key parameter in this respect is choosing the optimal
size of the groups to be tested. Our work addresses how a
population can be intelligently segmented, how tests can be
allocated across segments to maximise socioeconomic bene-
fit, and what group size should be used for each population
segment.

Our mechanism can be used to exit lockdown and is es-
pecially useful for monitoring the population for asympto-
matic carriers who may unknowingly spread the disease.
[9] Moreover, we emphasise that our proposed mechanism
provides considerable flexibility for policymakers to optimise
the balance between virus containment and socio-economic
welfare.



1.1 Preliminaries
Our approach exploits the heterogeneity of the population
when deciding how to allocate tests. To model this, we con-
sider a population [n] := {1, . . . , n} of size n which is parti-
tioned into k disjoint categories C1, . . . Ck and let ni denote
the number of individuals in category Ci. Our mechanism
tells groups of individuals to self-isolate for a certain dura-
tion of time when the individuals may be infected. In some
cases, however, a policy maker may wish to isolate an entire
category on a permanent basis.2 In order to keep track of such
an exogenous action, we let the parameter Si ∈ {0, 1} indicate
whether the entire category Ci has been isolated.

By assumption, all individuals in category Ci are independ-
ently infected with probability pi (and healthy with probability
qi = 1 − pi). Every individual in Ci also has an integral or
rational ‘exposure parameter’ di ≥ 0. One possible interpret-
ation of di is the number of other people that the individual
is in regular contact with when not in self-isolation, which
corresponds to the number of neighbours they have in a social
network. Consequently, a higher value of di means that an
individual has a higher probability of being infected in the first
place, and in the case of infection, a higher expected number
of individuals they can propagate the disease to if they are not
in self-isolation.

All individuals in Ci also have a rational cost of contain-
ment denoted γi ≥ 0. For example, a category consisting
of healthcare workers will have a high γi value, whereas a
category with individuals in other professions such as software
engineering who are able to to work from home will have a
low γi value. The cost of containment may also include fin-
ancial cost. For example, a category consisting of daily wage
labourers may have a high γi value as they do not have the
economic means of maintaining self-isolation.

In practice, di, pi and γi values vary for each individual in
a given population. There exist a variety of means to estimate
these values, such as using information from symptom track-
ing apps, generating exposure heat maps of a geography from
location data, or simply using existing government data about
a population. Furthermore, the determination of these values
can go in hand with a clustering of the population to fit the
categorisation mentioned above. We refer the reader to our
pre-print [7] for more details.

Finally, we let T denote the number of test kits that are made
available per day - this is our testing budget. Each test kit can
be used to perform a single individual or group test. The
maximum feasible group size for pooled tests is determined
by biological and practical constraints, and we denote it by G.

Our mechanism allocates `i tests to each category Ci such
that

∑
i∈[k] `i ≤ T . For each category it decides the size, gi,

of the group tests, i.e. the number of people that are pooled
together in a single group test. Note that our mechanism may
decide to perform individual tests for some category Ci, which
is equivalent to setting gi to 1. For any category Ci, we say
that we are performing uniform group testing with granularity

2This was the case, for instance, in the UK, where all individuals
who did not fit into the ‘keyworker’ category were compelled by law
to follow a lockdown order.

gi ≥ 1 and scope ` ≥ 1 if we perform group tests of `i disjoint
groups of size gi. Note that this implies that `igi ≤ ni.

1.2 Our Testing and Allocation Mechanism
Our testing and allocation mechanism performs periodic
(e.g. weekly) and proactive testing across the population while
prioritising population categories with higher exposure or con-
tainment cost by allocating more tests and setting smaller
group sizes, respectively. We then solve the optimisation prob-
lem defined in Section 1.3 to decide how many group tests `i
to allocate to each category Ci, and the group sizes gi for
these tests. Having determined these parameters, we perform
uniform group testing with scope `i and granularity gi for each
category. If a group test returns negative, we allow all indi-
viduals in the group to resume social and economic activity, as
they cannot infect others. Otherwise, if the group test returns
positive, we quarantine all individuals in the group.

1.3 Test Allocation as an Optimisation Problem
Recall that the aim of our mechanism is to contain the spread
of the virus while minimising the impact on the social and eco-
nomic fabric of the country. Formally, we achieve the former
objective by minimising the number of infected individuals
that are not covered by a group test, while the latter objective
can be achieved by minimising the number of healthy indi-
viduals that are quarantined unnecessarily as they form part of
a group that tests positive. Moreover, our two objectives are
weighted by the exposure and the containment cost, respect-
ively. Note that our objectives compete with each other in a
certain sense: setting larger group sizes increases the reach
of testing and leads to fewer untested but infected individu-
als, while setting smaller group sizes reduces the number of
healthy individuals that are quarantined unnecessarily. Recall-
ing that ni denotes the number of agents in category Ci and
that performing `i uniform testing of granularity gi covers gi`i
individuals in category Ci, we define ri := ni − gi`i as the
number of individuals in category Ci that are untested. For
each category Ci, we define a function θi(g), which denotes
the optimisation cost of administering a test at granularity g to
individuals in Ci. If Si = 0, i.e. if the entire category Ci is not
permanently isolated, we let θi(g) = (γiqi − dipi)g − γigqgi .
Otherwise, if Si = 1, we let θi(g) = −γigqgi .

This definition of θi formalises the following rationale. IfCi
is not under self-isolation, untested individuals may in fact be
infected, and they pass the virus to other individuals propor-
tional to their exposure. If a group test is performed, healthy
individuals may be within the group test and forced to self-
isolate unnecessarily, incurring a cost of γi. On the other hand,
if Ci is under self-isolation, untested individuals may in fact
be healthy, and hence remain under unnecessary self-isolation
and incur a containment cost of γi. On the other hand, if a
group test returns a positive result, there may be healthy indi-
viduals in the group who once again are forced to self-isolate
unnecessarily. For further details on the construction of θi, we
refer to our pre-print [7].

With this in hand, we can express the overall cost incurred
from testing segment Ci with `i tests at granularity gi by
`iθi(gi). Consequently, we can consider how to test according



to the following optimisation problem:

min
g,`

k∑
i=1

`iθi(gi)

s.t.
k∑
i=1

`i ≤ T, gi ≤ G,

`igi ≤ ni, gi, `i ∈ N.

(1)

The objective function is separable (as the sum of individual
loss functions per segment) and linear in `i for constant gi.
Hence, if we fix group sizes gi, we can formulate our optim-
isation problem as an integer linear programme (ILP) in ` with
k free variables and k + 1 inequality constraints.

This suggests a straightforward approach to solving (1). For
every feasible group size vector g = (g1, . . . , gk), solve the
resulting ILP for ` = (`1, . . . , `k); return the combination of
g and ` that minimises the objective. More importantly, the
separable nature of (1) implies that the optimal allocation of
the T tests can be computed via a simple greedy algorithm,
which we state in Algorithm 1. Intuitively, once the gi’s have
been set, the resulting ILP becomes a weighted sum of the `i’s,
which in turn have to sum up to T . Therefore, we proceed
by gradually increasing the `i with the highest weight θi(gi)
until the `igi ≤ ni constraint is met. As there are at most
Gk different ways to fix g, this method works in practice if
we have few population categories and constrain the set of
possible group sizes for each category’s tests. Notice that the
for loop in Algorithm 1 can be run entirely in parallel.

Algorithm 1 Optimal Segmented Uniform Group Testing

Require:
1: Possible group sizes: RG ⊆ [G]k

Iterating over Granularities:
2: OPT ←∞
3: for g ∈ RG do
4: `i ← 0 for i ∈ [k]
5: Compute σ, an ordering ofCi with respect to increasing

θi(gi) values
6: Tr ← T , i← 1
7: while Tr > 0 do
8: Set `σi to its maximum possible value.
9: `σ(i) ← min

{
Tr,

⌊
nσ(i)
gσ(i)

⌋}
10: Tr ← Tr − `σ(i), i← i+ 1
11: Update the optimal solution
12: if

∑k
i=1 `iθi(gi) < OPT then

13: OPT ←
∑k
i=1 `iθi(gi)

14: g∗, `∗ ← g, `
15:
16: return g∗, `∗, OPT

2 Modelling Testing Allocation During an
Epidemic Process

To verify the efficacy of our testing allocation mechanism,
we developed a simple network-based Susceptible-Infected-
Recovered (SIR) model on a heterogeneous population using

the graph-tool Python library [12]. We used this to model
the impact of an uneven distribution of the exposure on the
epidemiological process. The exposure parameter di was iden-
tified with the connectivity (also known as the degree) of a
node in the network model. The network was initiated as a
random geometric graph, meaning that nodes are scattered
at random in a 2-dimensional space and connected to their
neighbours within a predefined constant radius. We also in-
troduced two other types of nodes, representing key workers,
by connecting them to 20 other nodes chosen at random from
all nodes. 20 of the key worker nodes represented health care
workers, with a high cost of containment, while 480 represen-
ted marketplace workers, with a lower cost of containment. In
total 10, 000 nodes were initiated for the simulation.

The SIR model is run for a fixed number of (discrete) time
steps. In order to ensure high temporal resolution, we let
each day consist of 10 time steps and run the simulation for
200 days. At each time step, an infected node recovers with
probability γ. Moreover, if it is not self-isolating, it infects
each susceptible neighbouring node with probability β. The
intervention mechanism consists of performing a fixed number
of group tests each day and enforcing social isolation for
everyone in a group that tests positive for the virus. The
parameters β = 0.02 and γ = 0.0427 were chosen such
that average number of secondary infections and time until
recovery are R0 ∼ 2.5 [5] and trecovery = 14 days [8].

We explored the impact of different testing allocation scen-
arios on the epidemic outcome, paying particular attention to
the peak number of infected individuals and to the number of
quarantined individuals at any given point in time. The scen-
arios were constructed with the testing capacity of a LMIC
in mind, with 1 test available per 10, 000 inhabitants each
day. Self-isolation was conditional on being part of a group
that tested positive, and the allocation of tests was determ-
ined using two different strategies. Following our testing and
containment strategy, the population was categorised into two
segments depending on their exposure. Each segment was
further subdivided into “key workers” and “non-key workers”.
We then applied Algorithm 1 in order to allocate tests each
day to the different segments according to their probability of
infection, exposure, and cost of containment. In the ‘Random
Sampling’ testing strategy, used as a control strategy, testing
was conducted in groups of 10 that were sampled uniformly at
random from the population, independently of an individual’s
exposure or cost of containment.

We assumed an initial infection rate of 0.1% in the popula-
tion and that testing started from day 10. For each scenario, a
population of 10, 000 was simulated over 200 days, and was
initiated at random 100 times, which allowed us to obtain the
mean and the standard deviation of our simulations.

2.1 Results
Figure 1 shows the number of infected and quarantined in-
dividuals for the three strategies: no intervention, random
sampling and our resource maximising mechanism. When no
interventions were performed, the total number of infected
individuals was found to be 1, 800 at maximum, or 18% of
the population. Our testing and containment strategy shows
a reduction by (27 ± 5)% of the peak height in the number



Figure 1: Top: Number of infected for different testing and contain-
ment strategies at different stages of the epidemic. Bottom: Total
number of quarantined, and number of quarantined health care work-
ers and marketplace workers during the pandemic. The coloured
bands represent the standard deviation of each quantity.

of infected compared to the baseline scenario. The random
sampling strategy reduced the peak height by (1.5±4)% com-
pared to the baseline. The total number of quarantined during
the peak were approximately 2% in both cases.

3 Discussion
Testing is a limited resource that can have many different and
valuable purposes during a pandemic. In this study, we have
considered methods of maximising the utility of a limited
number of tests in a heterogeneous population. By combining
segmented testing with group testing, our proposed testing
mechanism can dramatically enhance the utility of a small
number of test kits. Our approach is conceptually simple and
general. It can be applied in scenarios where countries want to
ease out of lock-down, as well as to avoid a possible second
peak in the number of infections. Furthermore, it can also be
applied for smaller populations such as care homes, refugee
camps, jails, etc. where it is more feasible to map social
dynamics and estimate relevant parameters to our model in
order to optimise testing allocation within the population.

In order to validate our method, we conducted simulations
on a network-based SIR model. The results show that our
strategy can substantially reduce the peak height in the num-
ber of infections even when the number of tests available
is severely constrained. This is especially valuable in large
outbreaks, where testing capacities are significantly smaller
than the affected population. Our simulations do not include
implementing any other interventions, such as isolating symp-
tomatic cases, which would further increase the reach of a
limited number of tests by mainly testing asymptomatic indi-
viduals.

Importantly, our method can be used together with a contact
tracing app. Assuming that information could be obtained
about each individual’s connectivity from the app, testing

resources could be focused on those with high connectivity.

3.1 Future Directions

The optimisation problem in Section 1.3 has already proved
useful in providing non-trivial testing strategies over a seg-
mented population. However, multiple natural refinements to
the model can be made in order to tackle the practical and
logistical challenges present in many LMICs.

Incorporating test accuracy Our current optimisation
problem assumes that tests are perfectly accurate. In prac-
tice, tests have a false positive and false negative rate which
can be taken into account with a slight modification to our
resource-constrained optimisation framework. To achieve this,
we propose the following. Each group test on g individuals
is considered to have an “intensity” s, and as a function of
the intensity, the test has a false positive rate of p+(s) and a
false negative rate of p−(s). Intensity can be understood as the
result of making s independent tests on the same group, and
taking the majority vote of the results as the final group test
result. We can thus construct an identical containment policy
to that in Section 1.3, but with realistic false positive and false
negative rates. We obtain a similar optimisation programme
where each category Ci is tested at granularity gi, scope `i and
intensity si, resulting in a testing cost of `isi for that segment.

Pseudo Group Testing In practice, performing group test-
ing may not always be possible for various reasons. For in-
stance, while group testing reduces demand for test kits, it
still requires the collection of large numbers of test samples,
posing significant logistical challenges. A possible alternative
to group testing is to simulate group testing by selecting a
‘representative’ subset of each group, selected uniformly at
random. The benefits of pseudo group testing are limited if the
groups themselves are randomly sampled from a population
category or the entire population. However, when data is avail-
able to identify and test highly correlated groups, sampling
a random subset of the group yields a good estimate of their
health status. We note that one natural application of this
is to pool households and testing a single individual in each
household.

Non-Disjoint Group Tests In the mechanism described in
Section 1.2, we perform uniform group testing by applying a
group test to `i disjoint groups of size gi. In practice, ensuring
the disjointedness of groups that are tested can be challenging.
Instead, we can consider the simpler approach of randomly
sampling groups of size gi with replacement.

It is important to note that this approach may result in indi-
viduals being tested more than once in a single round, leading
to ‘testing fatigue’. Moreover, given the same number of tests,
this approach yields weakly less information than uniform
group testing. Indeed, the expected utility derived from tests
scales sub-linearly with the number of tests. However, non-
disjoint group testing may be a conceptually simpler approach
when dealing with the increased number of tests required in
the setting with imperfect testing, as it allows us to increase
the number of tests per segment beyond ni/gi.
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