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ABSTRACT

In deep learning, optimization algorithms or optimizers are often designed by
hands, such as SGD, Adam, and AdaGrad. The goal of Meta-Learning is im-
proving learning efficiency, while the key to fast learning is predicting the gradi-
ent accurately and quickly. Therefore, it is feasible for us to cast the design of
an optimization algorithm as a learning problem instead of designing by hands.
To be more specific, we can train a neural network called meta-learner” to pre-
dict the gradient using previous learning tasks. Inspired by previous works, we
apply LSTM to implement an optimization algorithm. In our work, we also in-
tegrated Meta-learning and Federated Learning to resolve medical data privacy
issue —- because optimizer is designed as a neural network and share the same
model structure, it can also be applied to federated learning which normally ag-
gregates models with the same accessible structure. Therefore, we transfer and
aggregate optimizers rather than optimizees, enabling us to train LSTM optimizer
which could improve optimizee models with agnostic structures in different ex-
periments. Since the parameters of each silo’s optimizee are not leaked out, the
privacy protection will be better.

1 INTRODUCTION

In Meta learning, there are two methods to improve the learning efficiency. One is finding better
initialization, which means the model can learn initialization parameters by MAML(Finn et al.,
2017) or Reptile(Nichol et al.|[2018)), while another is looking for better gradient descent.

Tasks in machine learning can be expressed as the problem of optimizing an objective function
f(0). And the goal is to find the final parameters of the neural network —- 6* to minimize the
objective function through some gradient descent algorithm. While traditional hand-designed
optimizers can exploit the specific structure in their problems of interest, they are applied at the
expense of potentially poor performance on problems outside of that scope. Such fact suggests that
the gradient descent mechanism itself should also be treated as a machine learning optimization
objective.

On the other hand, the availability of massive and representative datasets motivated the success
of deep learning. However, collection of medical data distributed in different hospital databases
is often prohibited by privacy concerns. When it comes to making the model more generalizable
and error-prone, we need data from more than only a single health-care provider. In order to solve
this problem, it’s feasible to use federated learning during training. Many researchers(Liu et al.,
2019)(Cui et al.| [2019)(Liu & Miller, [2020)(Shao et al.l 2020) have come up with great methods
to deal with this kind of issue. For example, H. Brendan McMahan et al.(McMahan et al., [2017)
proposed FederatedAveraging algorithm, which can train a classification or clustering model with
training data distributed over a large number of clients. In this paper, considering that the optimizer
is also designed as a neural network and share the same model structure, we did federated learning
on optimizers rather than optimizees, enabling us to train LSTM optimizer which could train
neural network models with different model structures and data. Since the parameters of each
silo’s optimizee are not leaked out, the privacy protection will be better. We did two experiments
for every dataset we used. Experimental results show that LSTM optimizer can be applied to op-
timizee with different structures, and federated learning can indeed effectively integrate information.
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2 METHOD

2.1 LOCAL META LEARNING

Before doing federated learning, we need to do local meta learning in every silo to get the parameters
of every trained local LSTM optimizer and we can ignore the federated learning strategy in this part.
In order to reach this goal, we just reproduce the LSTM optimizer in paper “Learning to Learn by
Gradient Descent by Gradient Descent” (Andrychowicz et al.l 2016)). In the following part, we will
discuss the details of designing LSTM optimizer.

In our work, we propose to replace hand-designed update rules with a learned update rule g, which
is decided by a LSTM network. And its own set of parameters is ®. During gradient descent, the
optimizer is provided with performance of the neural network and proposes updates to increase the
neural network’s performance. This results in updates to optimizee f of the form:

Orr1 = 0t + g:(V f(01), @)

When parameterizing the optimizer, we will write the final optimizee parameters 6* (f, ®) as a func-
tion of the optimizer parameters ® and the function in question. And the expected loss can be written

as:

L(®) = E;[f(6"(f,®))]
Because the update rule is decided by a LSTM network m, we take the update step g; to be the
output of m, parameterized by ®, whose state is denoted with h;. For training the optimizer, it will
also be convenient to make the objective depend on the entire trajectory of optimization, for some
horizon T,

L(®) = Ef[z we f ()]
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We can minimize the value of L(®) using gradient descent on ®. The gradient estimate § L(®) /6P
can be computed by sampling a random function f and applying backpropagation to computing the
gradient of the optimizer. When computing the optimizer’s gradient, we make the assumption that
the gradients of the optimizee do not depend on the optimizer parameters, i.e. 0 v/ /6® = 0. This
assumption allows us to avoid computing second derivatives of f.

2.2 FEDERATED META LEARNING

In the above section, we have already discussed how to do local meta learning in every silo.

In this section, we will discuss in details how we combine meta learning and federated learn-
ing(Andrychowicz et al., | 2016) together.

We will divide the training set into several silos and every silo corresponds to the optimizee. For
each dataset, we did two experiments:

In experiment one, each silo’s optimizee structure is set the same. And we train three different types
of optimizers. Firstly, to examine the performance of federated learning process, we use the central-
ized dataset(the whole training set) to train a LSTM optimizer. Then we use Adam, RMSprop, and
SGD as traditional optimizers to train optimizee respectively. At last, we initialize another LSTM
optimzier to start federated learning. And the process of each global cycle is like this: The global
LSTM opimizer is trained separately in each silo, and then the weigths of the trained LSTM opti-
mizer are saved in a list. After obtaining the weights of LSTM under all silos, weighted average the
weights to obtain global weights.Then let the global model load the global weights to obtain a new
global model. This model is the optimizer to be trained in each silo in the next round of the global
cycle. At the end of each round, test and use optimizee’s loss, fl as metrics to contrast the three
different types of optimizers’ performance.

In experiment two, the optimizee network structure of each silo is different, but the general training
and testing process is the same. It is worth noticing that when testing at the end of each round, pay
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attention to pre-training and fine-tuning the model with the training data of the silo, which will get
better results.

To conclude, one complete round of federated learning is called one global cycle. At the begin-
ning of one global cycle, we get and just need to store each LSTM meta-learner’s parameters in
a list. When we get the parameters of each silo’s LSTM optimizer, we need to apply aggregation
function to these parameters to get a new LSTM optimizer. Originally, we use federated averaging
algorithm(McMabhan et al.l 2017) to do this job. However, such algorithm doesn’t work well in the
second experiment. This is because the original average algorithm cannot find the appropriate in-
dex to consider optimizees’ different structures. In order to improve the performance of the LSTM
optimizer, we improve the aggregation function and take into account the performance of different
optimizees: After each global cycle, we will calculate the correlation by Pearson or Spearman of
optimizee loss-step among all silos. After that, softmax function will be used to convert the corre-
lation values into weights. Finally, the program will send back the global model back to each silo.
We can repeat several global rounds until we get a satisfying result.

So far, we have talked about the whole process of one global cycle. We give the pseudo codes in
Algorithm 1. And we will also talk about the Pearson correlation of loss-step in Algorithm 2. And
these two algorithms can be found in A.1

3 RESULTS

We verify the performance of our proposed methods in three groups of experiments, conducting
in MNIST, Fashion MNIST, and EICU. Due to space limitations, we only show the experimental
results of EICU in the text. The experimental results of MNIST and FashionMNSIT are in the
appendix A.3 and A.4. In all experiments, the trained optimizers use two-layer LSTMs with 20
hidden units in each layer. We compare our trained optimizers with standard optimizers used in
Deep Learning: SGD, RMSprop and Adam. We will do two experiments for each dataset we used.
The first experiment is called ”same models between silos”-to ensure that the optimizees of different
silos are the same, that is, unify the optimizee networks’ parameters, layers set by different silos, we
use FederatedAveraging algorithm to aggregate and transfer the optimizer network. And then we
will compare the performance after every global cycle. The second experiment is called “different
models between silos”-the optimizee parameters set by different silos are different, we use Algo-
rithm 1 to aggregate and transfer the optimizer network. And the performance will be compared
similarly.

3.1 EXPERIMENTS IN EICU

In the training of this dataset, we selected 30,000 medical records and divided them into training
set and test set in a 1:1 manner. Also, we process the dataset with Non-IID method, so as to better
simulate the actual application scenarios. Therefore, we classify the data with the same hospital
label as the same silo, and divide the training set and test set data into 5 silos. And in the actual
federated learning process, we also add a pre-training technique after all the optimizers of the
5 silo are trained and aggregated, the aggregated optimizers will be sent to the 5 silos’ training set
part for pre-training, and then the pre-trained model will be tested separately on the test set of 5
silos. The pre-training link not only conforms to the actual application scenario but also turns out
to be very effective in the experiment. In EICU’s experiments, the global federated cycle is set as 4
because further round only make little general improvement.

3.1.1 SAME MODELS BETWEEN SILOS

In experiment 1, as for the model structure of optimizee, we set layer size 20, number of layers 1.
optimizee’s loss-step curve will be used to evaluate the performance of different optimizers. In the
EICU section, we choose the 4th cycle’s testing result to compare the performance. First of all,
two kinds of LSTM curves both show better performance than those of the hand-crafted optimizers.
It presents that LSTM optimzier can surely promote the optimizee to converge faster to a better
result. Then, the performance of LSTM-Federated is no worse than that of LSTM-Centralized,
which suggests that the federated learning process aggregates the model information of each silo
effectively.
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Figure 1: Comparisons among three different types of optimizers performance, i.e. the hand-crafted
optimizers(ADAM, RMSprop, SGD), the optimizer trained by centralized data, the optimizer trained
through global federated cycles

3.1.2 DIFFERENT MODELS BETWEEN SILOS

In experiment 2, 5 silos’ optimizee model structures are respectively set as 5,10,15,20,25 and number
of layers is set as 1. In this time, each silo’s optimizee structure is different, and the model will be
tested separately on 5 different silos. Therefore, there are 5 silos’ testing results to be shown in the
figure. In this experiment, we choose optimizee’s 4th round loss and f1 score to evaluate different
optimizers’ performance. Due to space limitation, we only select the first 3 silos’ experimental
results. As a result, these two metrics of the 3 silos are shown respectively in the first and second
line.
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Figure 2: Comparisons among three different types of optimizers performance, i.e. the hand-crafted
optimizers(ADAM, RMSprop, SGD), the optimizer trained through global federated cycles and the
local optimizer trained only by 1 silo of data without federated learning process

Firstly, the convergence result of LSTM-Local is no better than those of hand-crafted optimizers,
which suggests that the dispersion of dataset may hamper the performance of learned optimizer.
However, LSTM-Federated turns out to be much better than the other two types of optimizers. It
presents that learned optimizer can be applied well to optimizees of different structures and that
federated learning process surely utilize effective aggregation algorithm.

4 CONCLUSION

In this paper, we do federated learning on optimizers rather than optimizees, enabling us to train
LSTM optimizer which could optimize neural network models with different model structures and
data. Since the parameters of each silo’s optimizee are not leaked out, the privacy protection will
be better. Experimental results show that the LSTM optimizer learns faster and better. Such fact
also presents that learned optimizer can be applied to optimizee with different structures, and that
federated learning can indeed effectively integrate information.
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A APPENDIX

A.1 ALGORITHM

In Algorithm 1, the value of global cycle T is actually chosen through practice. For different dataset,
we choose slightly different numbers to be the value of global cycle because of the balance between
performance and computation cost. After certain rounds of global cycles, the traditional and the
LSTM optimizer’s loss curves will all basically converge and further global cycles will only make
little general improvement.

In Algorithm 2, we normalize the correlation of loss-step with Softmax, which has the following
form:

ecii
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Algorithm 1 Federated Gradient-based meta learning

The K clients are indexed by k;

Initialize the kth optimizer network ®;, with random weights ¢y
Initialize the kth optimizee network ©, with random weights 6},
for Global cyclet =1 — T do
for each clientk =1 — K do
Train client model ©,, and ®;, on local dataset Dy,
Freeze the optimizer weights @, and reset the optimizee weights O,
Retrain the optimizee with the optimizer frozen on common test dataset and Get the loss-
step lx
end for
Update the frozen optimizer parameters with Pearson correlation of loss-step and Reset the
optimizee parameters
end for

Algorithm 2 Pearson correlation of loss-step

The frozen optimizer parameters ®(k=1,2,...K);
The loss-steps on common test dataset I (k=1,2,...K);
for each clienti =1 — K do
for each clientj =1 — K do
Compute the Pearson correlation ¢;; between [; and [;
end for
Transform c;; into normalized averaged weight w;; with Softmax(j=1,2,...K)
Update ®; with the averaged weights:
CI)Z' = Zé(:lq)kwik
end for

A.2 DATASET INFORMATION

A.2.1 MNIST

The MNIST dataset comes from the National Institute of Standards and Technology (NIST). The
training set consists of 250 handwritten numbers from different people, of which 50% are high
school students and 50% are from the population Census Bureau (the Census Bureau) staff. The test
set is also the same proportion of handwritten digital data.

A.2.2 EICU

The EICU dataset is an electronic medical record jointly produced by MIT and Harvard, which
contains approximately 120,000 patient records. The entire dataset is presented in the form of a
spreadsheet. A single patient record includes the patient’s number, the patient’s 1400 physiological
characteristics and the patient’s unit discharge status. The value of a certain physiological charac-
teristic is only 0 and 1, indicating presence or absence. The unit discharge status also has only 0 and
1.

A.2.3 FASHION-MNIST

Fashion-MNIST is a dataset consisting of a training set of 60,000 examples and a test set of 10,000
examples. Each exapmle is a 28x28 grayscale image, associated with a label from 10 classes. We
intend Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for
benchmarking machine learning algorithms. It shares the same image size and structure of training
and testing splits.

A.3 EXPERIMENTS IN MNIST

To preprocess the MNIST dataset, We split 60,000 images into training set and test set in a 1:1
manner. The first 30,000 pictures are equally divided into 5 silos and used for training separately.
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After the optimizers of the 5 silos are trained and aggregated in some way, a global federated cycle
is completed. There are 5 global federated cycles in the entire federated learning process. In each
round of global federated testing, the test data is the second half of the overall dataset.

A.3.1 SAME MODELS BETWEEN SILOS

As for 5 silos’ optimizee structures, we set layer size 20, number of layers 1. In this part, we use
optimizee’s loss-step curve as metric of the performance of different optimizers. And we choose the
5th cycle’s testing result to compare different optimizers’ performance.

MNIST(Global cycle=5)
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Figure 3: Comparisons among three different types of optimizers performance, i.e. the hand-crafted
optimizers(ADAM, RMSprop, SGD), the optimizer trained by centralized data, the optimizer trained
through global federated cycles

A.3.2 DIFFERENT MODELS BETWEEN SILOS

In the second experiment, 5 silos’ optimizee model structures are respectively set as 5,10,15,20,25
and number of layers is set as 1. And we also show the 5th global cycle’s testing loss. However, as
each silo’s optimizee structure is different, there are 5 silos’ testing results to be shown.
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Figure 4: Comparisons among three different types of optimizers performance, i.e. the hand-crafted
optimizers(ADAM, RMSprop, SGD), the optimizer trained through global federated cycles and the
local optimizer trained only by 1 silo of data without federated learning process

A.4 EXPERIMENTS IN FASHION-MNIST

The process of Fashion-MNIST is the same us MNIST dataset. We split 60,000 images into training
set and test set in a 1:1 manner. The first 30,000 pictures are equally divided into 5 silo and trained
separately. After the models of the 5 silo are trained and aggregated in some way, a global federated
cycle is completed. There are 5 global federated cycles in the entire federated learning process. In
each round of global federated testing, the test data is the second half of the overall dataset.
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A.4.1 SAME MODELS BETWEEN SILOS

In experiment 1, as for the model structure of optimizee, we set layer size 20, number of layers 1.
optimizee’s loss-step curve will be used to evaluate the performance of different optimizers. Like
the MNIST section, we still choose the 5th cycle’s testing result to compare the performance.
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ADAM
Ny === RMSprop

2x10" [\ s60
LSTM-Centralized
LSTM-Federated

I N NV s

0 20 40 60 80
steps.

Figure 5: Comparisons among three different types of optimizers performance, i.e. the hand-crafted
optimizers(ADAM, RMSprop, SGD), the optimizer trained by centralized data, the optimizer trained
through global federated cycles

As you can see from the figure, the performance of LSTM optimizer is better than hand-crafted
optimizers(Adam, RMSprop, SGD); to be more specific, LSTM optimzier can indeed make the
objective function converge faster and converge to a smaller test error. Secondly, similar to section
3.1.1, the training effect of the LSTM optimizer finally trained through federated learning is better
than the effect of using centralized data, which means that federated learning process does effectively
integrate the model information of each silo.

A.4.2 DIFFERENT MODELS BETWEEN SILOS

In experiment 2, 5 silos’ optimizee model structures are respectively set as 5,10,15,20,25 and number
of layers is set as 1. The 5th global cycle’s testing loss is displayed. However, as each silo’s
optimizee structure is different, there are 5 silos’ testing results to be shown.
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Figure 6: Comparisons among three different types of optimizers performance, i.e. the hand-crafted
optimizers(ADAM, RMSprop, SGD), the optimizer trained through global federated cycles and the
local optimizer trained only by 1 silo of data without federated learning process

According to the loss curve under each silo, first of all, the convergence result of LSTM-Local is
better than that of the hand-crafted optimizers. What’s more, the performance of LSTM-federated is
significantly better than the other two, indicating that learned optimizer can be applied to optimizee
with different structures, and federated learning can indeed effectively integrate information.
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