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ABSTRACT

Although knowing where a protein functions in a cell is important to character-
ize biological processes, this information remains unavailable for most known
proteins. Machine learning narrows the gap through predictions from expertly
chosen input features leveraging evolutionary information that is resource expen-
sive to generate. We showcase using embeddings from protein language mod-
els for competitive localization predictions not relying on evolutionary informa-
tion. Our lightweight deep neural network architecture uses a softmax weighted
aggregation mechanism with linear complexity in sequence length referred to
as light attention (LA). The method significantly outperformed the state-of-the-
art for ten localization classes by three to five percentage points (Q10). The
novel models are available as a web-service and as a stand-alone application at
embed.protein.properties.

1 INTRODUCTION

Proteins are the machinery of life involved in all essential biological processes (biological back-
ground in Appendix). Knowing where in the cell a protein functions, referred to as its subcellular
localization or cellular compartment, is important for unraveling biological function (Nair & Rost,
2005; Yu et al., 2006). Experimental determination of protein function is complex, costly, and
selection biased (Ching et al., 2018). In contrast, the costs of determining protein sequences con-
tinuously decrease (Consortium, 2021), increasing the sequence-annotation gap (gap between pro-
teins of known sequence and unknown function). The standard tool in molecular biology, namely
homology-based inference (HBI), accurately transfers annotations from experimentally annotated
to sequence-similar un-annotated proteins. However, HBI is not available or unreliable for most
proteins (Goldberg et al., 2014; Mahlich et al., 2018). Machine learning methods perform less well
(lower precision) but are available for all proteins (high recall). The best methods use evolutionary
information in the form of protein proifles as input (Goldberg et al., 2012; Almagro Armenteros
et al., 2017).

Recently, protein sequence representations (embeddings) have been learned from databases
(Steinegger & Söding, 2018; Consortium, 2021) using language models (LMs) (Heinzinger et al.,
2019; Rives et al., 2019; Alley et al., 2019; Elnaggar et al., 2020) initially used in natural language
processing (NLP) (Radford, 2018; Devlin et al., 2019; Radford et al., 2019). Models trained on
protein embeddings via transfer learning tend to be outperformed by approaches using evolution-
ary information (Rao et al., 2019; Heinzinger et al., 2019). However, embedding-based solutions
can even outshine HBI (Littmann et al., 2021) and models predicting aspects of protein structure
(Bhattacharya et al., 2020; Rao et al., 2020). Yet, for location prediction, embedding-based mod-
els (Heinzinger et al., 2019; Elnaggar et al., 2020; Littmann et al., 2021) remained inferior to the
state-of-the-art using evolutionary information, which was DeepLoc (Almagro Armenteros et al.,
2017).

In this work, we leveraged protein embeddings to predict cellular location without evolutionary
information. We proposed a deep neural network architecture using light attention (LA) inspired by
previous attention mechanisms (Bahdanau et al., 2015; Vaswani et al., 2017).
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2 RELATED WORK

Previous state-of-the-art (SOTA) models for subcellular location prediction combined homology,
evolutionary information, and machine learning, often building prior knowledge about biology into
model architectures. For instance, LocTree2 (Goldberg et al., 2012) implemented profile-kernel
SVMs (Cortes & Vapnik, 1995; Rui Kuang et al., 2004) which identified k-mers conserved in evo-
lution and put them into a hierarchy of models inspired by cellular sorting pathways. BUSCA
(Savojardo et al., 2018) combines three compartment-specific prediction methods based on SVMs
using evolutionary information (Pierleoni et al., 2006; 2011; Savojardo et al., 2017). DeepLoc (Al-
magro Armenteros et al., 2017) uses convolutions followed by a bidirectional LSTM (Hochreiter
& Schmidhuber, 1997; Schuster & Paliwal, 1997) that employs Bahdanau-Attention (Bahdanau
et al., 2015). Using evolutionary information, DeepLoc rose to become the SOTA. Embedding-
based methods (Heinzinger et al., 2019) have not yet outperformed this SOTA, although ProtTrans
(Elnaggar et al., 2020), based on very large data sets, came close.

3 METHODS

Data. Following previous work (Heinzinger et al., 2019; Elnaggar et al., 2020), we used a data
set introduced by DeepLoc (Almagro Armenteros et al., 2017) for training and testing. The dataset
contained 13 858 proteins annotated with experimental evidence for one of ten location classes.
2 768 proteins made up the test set (henceforth called setDeepLoc). To rule out that methods had
been optimized for the static standard test set (setDeepLoc) used by many developers, we created
a new independent test set setHARD. It contains 490 samples that are more difficult to predict as
more stringent redundancy reduction was applied. They also follow a different class distribution
than setDeepLoc. Details on the datasets are provided in the Appendix.

Model Input: protein embeddings. As input to the LA architectures, we extracted embeddings
from three pre-trained protein language models (LMs): the bidirectional LSTM SeqVec (Heinzinger
et al., 2019) based on ELMo (Peters et al., 2018), the encoder-only model ProtBert (Elnaggar et al.,
2020) based on BERT (Devlin et al., 2019), and the encoder-only model ProtT5 (Elnaggar et al.,
2020) based on T5 (Raffel et al., 2020). We obtained embeddings for each residue (NLP equiva-
lent: word) in a protein sequence (NLP equivalent: document) using the bio-embeddings software
(Dallago et al., 2020). For SeqVec, the per-residue embeddings were generated by summing the
representations of each layer. For ProtBert and ProtT5, the per-residue embeddings were extracted
from the last hidden layer of the models. With a hidden size of 1024 for each LM, inputs to LA were
of size 1024× L, where L is the length of the protein sequence.

Light Attention (LA) architecture. The input to light attention (LA) classifiers were protein
embeddings X ∈ R1024×L. In the architecture, the input was transformed by two separate 1D
convolutions with filter sizes s parameterized by learned weights W(e),W(v) ∈ Rs×1024×dout . The
convolutions were applied over the length dimension to produce attention coefficients and value
features E,V ∈ Rdout×L. To use the coefficients as attention distribution over all j, we softmax-
normalized over protein length. The attention weight Ai,j ∈ R for the j-th residue and the i-th
feature dimension was calculated as:

Ai,j =
exp(Ei,j)∑L
l=1 exp(Ei,l)

(1)

As the weight distributions for each feature dimension i are independent, they might generate differ-
ent attention patterns. We used the normalized attention distributions to compute weighted sums over
the transformed residue embeddings Vi,j . Thus, we obtained a fixed-size representation x′ ∈ Rdout

for the whole protein, independent of its length.

x′i =

L∑
j=1

Ai,jVi,j (2)

We concatenated x′i with the maximum of the values over the length dimension vmax ∈ Rdout ,
meaning vmax

i = max1≤j≤L(Vi,j). This concatenated vector was input into a two layer multi-layer
perceptron (MLP) f : R2dout → Rdclass with dclass as the number of classes. The softmax over the
MLP output represents the individual class probabilities.
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Figure 1: LA architectures perform best. Bars give the ten-class accuracy (Q10) for popular loca-
tion prediction methods on setDeepLoc (light-gray bars) and setHARD (dark-gray bars). Baseline is
the most common class in each set. Horizontal gray dashed lines mark the previous SOTA on either
set. Estimates for standard errors are marked in orange for the methods introduced here. setHARD
results are provided for a subset of methods that yielded the best results on setDeepLoc (tabular data
in Appendix: Additional Results).

Methods used for comparison. For comparison, we trained a two layer feed-forward network
(FFN) proposed previously (Heinzinger et al., 2019). Instead of per-residue embeddings in R1024×L,
the FFNs used sequence-embeddings in R1024, which derived from residue-embeddings averaged
over the length dimension (i.e. mean pooling). Furthermore, for these representations, we performed
annotation transfer (dubbed AT) based on embedding similarity (Littmann et al., 2021). Following
this approach, proteins in setDeepLoc and setHARD were annotated by transferring the class of the
nearest neighbor in the DeepLoc training set (given by L1 distance).

4 RESULTS AND DISCUSSION

Embeddings outperformed evolutionary information. Our results show that LM embedding
based methods outperform models using evolutionary information. The simple AT approach already
outperformed some methods that use evolutionary information. Using ProtT5 embeddings, LA im-
proves upon the state-of-the-art (SOTA) (Almagro Armenteros et al., 2017) by 3 and 5 percentage
points on setHARD and setDeepLoc.

Light attention (LA) mechanism crucial. To further evaluate the effectiveness of the LA architec-
ture’s aggregation mechanisms, we replaced the light attention that produced x′ with averaging the
coefficient features e over the length dimension. Performance using ProtT5 embeddings dropped
from 83.37% to 81.54 ± 0.13% (Q10(setDeepLoc)). Similarly, we dropped the max-pooled values
vmax as input to the MLP such that only the aggregated light attention features were used. This
reduced performance from 83.37% to 82.23± 0.44% (Q10(setDeepLoc)).

Model trainable on consumer hardware. After embeddings for proteins were generated, the final
LA architecture, made of 18 940 224 parameters, could be trained on an Nvidia GeForce GTX 1060
with 6GB vRAM in 18 hours or on a Quadro RTX 8000 with 48GB vRAM in 2.5 hours. We provide
code to reproduce all results1.

Light attention beats pooling. The central challenge for the improvement introduced here was to
convert the residue-embeddings (NLP equivalent: word embeddings) from protein language models
such as SeqVec (Heinzinger et al., 2019), ProtBert, or ProtT5 (Elnaggar et al., 2020) to meaning-

1https://github.com/HannesStark/protein-localization
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ful sequence-embeddings (NLP equivalent: document). Simple averaging already surpassed some
evolutionary-information-based methods using k-NN annotation transfer (Figure 1: AT*) and even
SOTA using a feed-forward network (Figure 1: DeepLoc vs. FNN ProtT5). However, LA was able
to consistently distill more information from embeddings. Most likely, the improvement can be at-
tributed to LA’s ability to regulate the immense difference in lengths of proteins (varying from 30 to
30 000 residues (Consortium, 2021)) by learning attention distributions over the sequence positions.
LA can capture long-range dependencies and focus on specific sequence regions such as beginning
and end, which play a particularly important role in determining protein location for some proteins
(Lange et al., 2007; Almagro Armenteros et al., 2017).

First win over evolutionary information. Effectively, LA trained on protein LM embeddings
from ProtT5 (Elnaggar et al., 2020) was at the heart of the first method that clearly appeared to out-
perform the best existing method (DeepLoc, (Almagro Armenteros et al., 2017; Heinzinger et al.,
2019)) in a statistically significant manner on two test sets (Figure 1). To the best of our knowledge,
this improvement was the first instance that embedding-based transfer learning substantially outper-
formed AI/ML methods using evolutionary information for function prediction. Even if embeddings
are extracted from LMs trained on large sequence data originating from evolution, the majority of
data learned originates from more generic constraints informative of protein structure and function.

Better and faster. The embeddings needed as input for the LA models come with three advantages
over evolutionary-information-based input required for methods such as DeepLoc (Almagro Ar-
menteros et al., 2017). Chiefly, embeddings can be obtained in far less time than is needed to gener-
ate evolutionary information and require fewer compute resources. Even the lightning-fast MMseqs2
(Steinegger & Söding, 2017), which is not the standard in bioinformatics (other methods 10-100x
slower), in our experience required about 0.3 seconds per sequence to generate evolutionary infor-
mation input for 10 000 proteins. The slowest but most informative embedder (ProtT5) is 3x faster,
while the second most informative (ProtBert) is 5x faster (Appendix Table 3). Additionally, these
MMseqs2 stats derive from runs on a machine with > 300GB of RAM and 2x40cores/80threads
CPUs, while generating LM embeddings required only a moderate machine (8 cores, 16GB RAM)
equipped with a modern GPU with >10GB of vRAM. Lastly, extracting evolutionary information
relies on the use of tools (e.g., MMseqs2) that are sensitive to parameter changes while generating
embeddings doesn’t require a parameter choice beyond which LM to use (e.g., ProtBert vs. ProtT5).

What can users expect from subcellular location predictions? If the top accuracy for one data
set was Q10 ∼ 60% and Q10 ∼ 80% for the other, what can users expect for their next ten queries:
six correct or eight, or 6-8? The answer depends on the query: if those proteins were sequence
similar to proteins with known location (case: redundant): the answer is eight. Conversely, for new
proteins (without homologs of known location), six in ten will be correctly predicted, on average. In
turn, this implies that for novel proteins, there seems to be significant room for pushing performance
to further heights, possibly by combining LA ProtBert/LA ProtT5 with evolutionary information.

5 CONCLUSION

We presented a light attention mechanism (LA) in an architecture operating on language model em-
beddings of protein sequences, namely those from SeqVec (Heinzinger et al., 2019), ProtBert, and
ProtT5 (Elnaggar et al., 2020). By implicitly assigning a different importance score for each se-
quence position, the method succeeded in predicting protein subcellular location much better than
previous methods. On the standard subcellular localization benchmark and on a newly created harder
test set, LA outperformed the state-of-the-art without using evolutionary-based inputs. This consti-
tuted an important breakthrough since it is the first time embedding-based approaches beat evolu-
tionary information in function-related predictions. The more accurate and less homology dependent
localization predictions can help biologists in discovering protein function and in downstream tasks
like drug discovery. As such, we make the best methods LA ProtBert and LA ProtT5 freely available
as a web-server and as part of a high-throughput pipeline (Dallago et al., 2020).
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A APPENDIX

B PROTEIN PRELIMINARIES

Protein Sequences. Proteins are built by chaining and arbitrary number of one of 20 amino
acids in a particular order. When amino acids come together to form protein sequences, they are
dubbed residues. During the assembly in the cell, constrained by physiochemical forces, the one-
dimensional chains of residues fold into unique 3D shapes based solely on their sequence that largely
determine protein function. The ideal machine learning model would predict a protein’s 3D shape
and thus function from just protein sequence (the ordered chain of residues).
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Protein Subcellular Location. Eukaryotic cells contain different organelles/compartments. Each
organelle serves a purpose, e.g., ribosomes chain together new proteins while mitochondria synthe-
size ATP. Proteins are the machinery used to perform these functions, including transport in and out
and communication between different organelles and a cell’s environment. For some compartments,
e.g., the nucleus, special stretches of amino acids, e.g., nuclear localization signals (NLS), help
identifying a protein’s location via simple string matching. However, for many others, the localiza-
tion signal is diluted within the whole sequence, requiring sequence-level predictions. Furthermore,
some organelles (and the cell itself) feature membranes with different biochemical properties than
the inside or outside, requiring protein gateways.

Homology-inference. Two highly similar protein sequences will most likely fold in similar 3D
structures and more likely to perform similar functions. Homology based inference (Nair & Rost,
2002; Mahlich et al., 2018), which transfers annotations of experimentally validated proteins to
query protein sequences, is based on this assumption (Sander & Schneider, 1991). Practically this
means searching a database of annotated protein sequences for sequences that meet both an identity
threshold and a length-of-match threshold to some query protein sequence. Sequence homology
delivers good results, but its stringent requirements render it applicable to only a fraction of proteins
(Rost, 1999).

Machine learning Function Prediction. When moving into territory where sequence similarity is
less conserved for shorter stretches of matching sequences (Mahlich et al., 2018; Rost, 2002), one
can try predicting function using evolutionary information and machine learning (Goldberg et al.,
2012; Almagro Armenteros et al., 2017). Evolutionary information from protein profiles, encoding
a protein’s evolutionary path, is obtained by aligning sequences from a protein database to a query
protein sequence and computing conservation metrics at the residue level. Using profiles leads to
impressively more accurate predictions for sequences with no close homologs and has been the
standard for most protein prediction tasks (Urban et al., 2020), including subcellular localization
(Goldberg et al., 2012; Almagro Armenteros et al., 2017; Savojardo et al., 2018). While profiles
provide a strong and useful inductive bias, their information content heavily depends on a balance
of the number of similar proteins (depth), the overall length of the matches (sequence coverage), the
diversity of the matches (column coverage), and their generation is parameter sensitive.

C IMPLEMENTATION DETAILS

Training procedure. For the LA architecture, we trained three models, one for each protein
embedding (SeqVec, ProtBert and ProtT5) for subsets of the training set. The models were trained
using filter size s = 9, dout = 1024, the Adam (Kingma & Ba, 2015) optimizer (learning rate
5 × 10−5) with a batch size of 150 protein embeddings, and early stopping after no improvement
in validation loss for 80 epochs. We selected the hyperparameters via random search. Training was
done on either an Nvidia Quadro RTX 8000 with 48GB vRAM or an Nvidia GeForce GTX 1060
with 6GB vRAM.

Hyperparameters. We performed random search over the following parameter spaces. The
evaluated learning rates were in the range of [5 × 10−6 - 5 × 10−3]. For the light at-
tention architecture, we tried filter sizes [3, 5, 7, 9, 11, 13, 15, 21] and hidden sizes dout ∈
[32, 128, 256, 512, 1024, 1500, 2048], as well as concatenating outputs of convolutions with differ-
ent filter sizes. For the FFN, we searched over the hidden layer sizes [16, 32, 64, 512, 1024], where
32 was the optimium. We maximized batch size to fit a Quadro RTX 8000 with 48GB vRAM, re-
sulting in the batch size of 150. Note that the memory requirement is dependent on the size of the
longest sequence in a batch. In the DeepLoc dataset, the longest sequence had 13 100 residues.

D ADDITIONAL RESULTS

Low performance for minority classes. The confusion matrix (Figure 2 of predictions for set-
DeepLoc using LA trained on ProtT5 embeddings highlighted how many proteins were incorrectly
predicted in the most prevalent class, cytoplasm, and that even the two majority classes were often
confused with each other (Figure 2: nucleus and cytoplasm). In line with the previous SOTA (Alma-
gro Armenteros et al., 2017), the performance was particularly low for the most under-represented

9



Published as a workshop paper at ICLR 2021

classes, namely Golgi apparatus, lysosome/Vacuole, and peroxisome (accounting for 2.6%, 2.3%,
and 1.1% of the data, respectively).

Figure 2: Mostly capturing majority classes. Confusion matrix of LA predictions on ProtT5
Elnaggar et al. (2020) embeddings for setDeepLoc Almagro Armenteros et al. (2017) annotated
with the fraction of the true class. Y-axis (vertical): true class, X-axis (horizontal): predicted class.
Labels: Mem=cell Membrane; Cyt=Cytoplasm; End=Endoplasmatic Reticulum; Gol=Golgi appa-
ratus; Lys=Lysosome/vacuole; Mit=Mitochondrion; Nuc=Nucleus; Per=Peroxisome; Pla=Plastid;
Ext=Extracellular

Figure 3: Qualitative analysis confirms: attention effective. UMAP McInnes et al. (2018)
projections of per-protein embeddings colored according to subcellular location (setDeepLoc). Top:
ProtT5 embeddings X mean-pooled over protein length (as for FFN/AT input). Bottom: ProtT5
embeddings X weighted according to the attention distribution produced by LA and then summed
over the length dimension (this is not x′ as we sum the input features X and not the values V after
the convolution).

We provide results for both setDeepLoc (Table 1) and setHARD (Table 2) in tabular form, including
the Matthew’s Correlation Coefficients (MCC). Additionally, Table 3 shows implementation details
of the language models to compare their sizes and inference time.
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Table 1: Accuracy and Matthew’s correlation coefficient (MCC) on setDeepLoc.

Method Accuracy MCC

LocTree2 61.20 0.525
MultiLoc2 55.92 0.487
SherLoc2 58.15 0.511
YLoc 61.22 0.533
CELLO 55.21 0.454
iLoc-Euk 68.20 0.641
WoLF PSORT 56.71 0.479
DeepLoc62 73.60 0.683
DeepLoc 77.97 0.735

AT SeqVec 60.97 0.508
AT ProtBert 64.85 0.567
AT ProtT5 71.89 0.661
FFN SeqVec 70.57± 0.93 0.636± 0.011
FFN ProtBert 75.88± 0.45 0.702± 0.006
FFN ProtT5 79.20± 0.55 0.749± 0.007
LA SeqVec 75.63± 0.11 0.705± 0.002
LA ProtBert 80.29± 0.21 0.762± 0.002
LA ProtT5 83.37± 0.24 0.800± 0.003

Table 2: Accuracy and Matthew’s correlation coefficient (MCC) on setHARD.

Method Accuracy MCC

DeepLoc62 56.94 0.476
DeepLoc 51.36 0.410
AT ProtBert 42.04 0.306
AT ProtT5 47.14 0.368
FFN ProtBert 53.16± 1.19 0.429± 0.014
FFN ProtT5 55.31± 1.04 0.457± 0.012
LA ProtBert 58.36± 1.02 0.490± 0.012
LA ProtT5 60.92± 0.82 0.522± 0.010

Overfitting through standard data set? For protein subcellular location prediction, the data
sets from DeepLoc (Almagro Armenteros et al., 2017) have become a standard in the field. Such
static standards facilitate method comparisons. To further probe results, we created a new test
set (setHARD), which was redundancy-reduced both with respect to itself and all proteins in the
DeepLoc set (comprised of training data and setDeepLoc, used for testing). For this set, the 10-state
accuracy (Q10) dropped, on average, 22 percentage points with respect to the static standard (Figure
1). We argue that this large margin may be attributed to some combination of the following coupled
effects.

(1) All new methods may simply have been substantially overfitted to the static data set, e.g., by
misusing the test set for hyperparameter optimization. This could partially explain the increase in
performance on setHARD when mimicking the class distributions in the training set and setDeepLoc.

(2) The static standard set allowed for some level of sequence-redundancy (information leakage)
at various levels: certainly within the test set, which had not been redundancy reduced to itself,
maybe also between the training and test set. Methods with many free parameters might more
easily zoom into exploiting such residual sequence similarity for prediction because proteins with
similar sequence locate in similar compartments. In fact, this may explain the somewhat surprising
observation that DeepLoc appeared to perform worse on setHARD using evolutionary information
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Table 3: Parameters and implementation details of SeqVec Heinzinger et al. (2019), ProtBert and
ProtT5 Elnaggar et al. (2020). The time it takes to embed a single sequence (sec per sequence) is
averaged over embedding 10 000 proteins taken from the Protein Data Bank (PDB) Berman et al.
(2000). The number of sequences used for the pre-training task is detailed in ”# sequences”.

SeqVec ProtBert ProtT5

parameters 93M 420M 3B
# sequences 33M 2.1B 2.1B
Sec per sequence 0.03 0.06 0.1
attention heads - 16 32

instead of a generic BLOSUM metric (Figure 1: DeepLoc62 vs. DeepLoc). Residual redundancy
is much easier to capture via evolutionary information than by BLOSUM (Urban et al., 2020) (for
computational biologists: the same way in which PSI-BLAST (Altschul et al., 1997) outperforms
pairwise BLAST).

(3) Classes with more experimental data tended to be predicted more accurately. As setDeepLoc and
setHARD differed in their class composition, even without overfitting and redundancy, prediction
methods would perform differently on the two. In fact, this can be investigated by recomputing
the performance on a similar class-distributed superset of setHARD, on which performance dropped
only by 11, 24, 18, and 17 percentage points for DeepLoc62, DeepLoc, LA ProtT5, and LA ProtBert,
respectively.

Overall, several overlaying effects caused the performance to drop between the two data sets. In-
terestingly, different approaches behaved alike: both for alternative inputs from protein language
models (ProtVec, ProtBERT, ProtT5) and for alternative methods (AT, FFN, LA), of which one (AT)
refrained from weight optimization.

E DATASETS

The test set setDeepLoc has been redundancy reduced to the training set (but not to itself) at 30%
pairwise sequence identity (PIDE) or to an E-value cutoff of 10−6. To tune model parameters
and avoid overestimating performance, we further split the DeepLoc training set into a training set
containing 9 503 sequences and a validation set (redundancy reduced to training by 30% PIDE)
containing 1 158 sequences.

Novel setHARD. from SwissProt (Consortium, 2021). Applying the same filtering mechanisms as
the DeepLoc developers (only eukaryotes; only proteins longer than 40 residues; no fragments; only
experimental location annotations) gave 5 947 proteins. Using MMseqs2 (Steinegger & Söding,
2017), we removed all proteins from the new set with more than 20% PIDE to any protein in
DeepLoc (both training and testing data). Next, we mapped location classes from DeepLoc to Swis-
sProt, merged duplicates, and removed multi-localized proteins (protein X both in class Y and Z).
Finally, we clustered proteins to representatives at 20% PIDE and obtained a new and more chal-
lenging test set (dubbed setHARD) with 490 proteins. Class distributions differed between the two
sets. Table 4 shows the distribution of subcellular localization classes in the setDeepLoc and our
new setHARD.

E.1 NEW TEST SET CREATION

In the following, we lay out the steps taken to produce the new test set (setHARD). The starting point
is a filtered UniProt search with options as selected in Figure 4. Python code used is available here:
http://data.bioembeddings.com/public/data/newtestsetprocedurecodedata.zip.

• Download data as FASTA & XML:
wget "https://www.uniprot.org/uniprot/?query=taxonomy:%
22Eukaryota%20[2759]%22%20length:[40%20TO%20*]%
20locations:(note:*%20evidence:%22Inferred%20from%
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Table 4: Number of proteins and percentage of dataset for each class for the DeepLoc dataset and
our setHARD. ER abbreviates Endoplasmatic Reticulum

Location DeepLoc setHARD
# % # %

Nucleus 4043 28.9 99 20.2
Cytoplasm 2542 19.3 117 23.8
Extracellular 1973 14.0 92 18.8
Mitochondrion 1510 11.8 10 2.0
Cell Membrane 1340 9.5 98 20.0
ER 862 6.2 34 6.9
Plastid 757 5.4 11 2.6
Golgi apparatus 356 2.6 13 2.6
Lysosome/Vacuole 321 2.3 13 2.2
Peroxisome 154 1.1 3 0.6

Figure 4: Screenshot of the filtering options applied to the advanced UniProt search
(uniprot.org/uniprot).

20experiment%20[ECO:0000269]%22)%20fragment:no%20AND%
20reviewed:yesformat=xmlforce=truesort=scorecompress=yes"

wget "https://www.uniprot.org/uniprot/?query=taxonomy:%
22Eukaryota%20[2759]%22%20length:[40%20TO%20*]%
20locations:(note:*%20evidence:%22Inferred%20from%
20experiment%20[ECO:000026%22)%20fragment:no%20AND%
20reviewed:yesformat=fastaforce=truesort=scorecompress=yes"

• Download deeploc data:
wget http://www.cbs.dtu.dk/services/DeepLoc-1.0/
deeploc data.fasta

• Align sequences in swissprot to deeploc that have more than 20% PIDE:
mmseqs easy-search swissprot.fasta deeploc data.fasta -s 7.5
--min-seq-id 0.2 --format-output query,target,fident,alnlen,
mismatch,gapopen,qstart,qend,tstart,tend,evalue,bits,pident,
nident,qlen,tlen,qcov,tcov alignment.m8 tmp

• Extract localizations from SwissProt XML:
python extract localizaiotns from swissprot.py

• Map deeploc compartments on swissprot localizations & remove duplicates ([P123, Nu-
cleus] appearing twice), remove multilocated ([P123, Nucelus] and [P123, Cytoplasm]
–> remove P123) empty or not experimental annotations:
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python map and filter swissprot annotations.py

• Create FASTA like deeploc from sequences not in alignment:
python extract unaligned sequences.py

• Redundancy reduce new set to 20%:
mmseqs easy-cluster --min-seq-id 0.2 new test set not redundancy reduced.fasta
new hard test set PIDE20.fasta tmp
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