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ABSTRACT

In this work, we analyze by means of Bayesian methods the relationship between
the first change point in the curve of COVID-19 cases in the Midwest and its
position with respect to state executive orders, specifically the ”Face Mask” and
”Stay at Home” orders. We focus our attention on the twelve states of the Midwest.
Estimation and uncertainty quantification of the first change point are provided.
We further test the null hypothesis that the first change point arrives after those
orders via the Savage–Dickey density ratio test. We find that the first qualitative
change in the COVID-19 curve in the Midwest states precedes the ”Face Mask”
and ”Stay at Home” orders, with the possible exclusion of Illinois, where our
analysis sets the first change point in between the two state orders.

1 INTRODUCTION

COVID-19 hit the world in December 2019 and is still possibly the biggest public health concern
(World Health Organization). The first case was identified in Wuhan, China, after which it spread
throughout Europe and the US, leading to an ongoing pandemic, as officially determined by WHO
in March 2020 (World Health Organization). Since the very first stages of the pandemic, the global
research community mobilized and started to study the evolution of COVID-19 to understand its vir-
ology, pathophysiology, and epidemiology (Ackermann et al., 2020; Wiersinga et al., 2020; Vabret
et al., 2020; Huang et al., 2020). The complexity of the problem requires the development of new
methodologies and the collaboration of large interdisciplinary teams.

Our team joined this interdisciplinary research effort with the interest of understanding the dynamics
of the disease from a machine learning perspective. We want to understand the time evolution
of COVID-19 and in particular its changes with respect to non-pharmaceutical interventions (eg.
lockdowns, social distancing, face mask, stay at home, and many others). In this manuscript, we
will concentrate on one single aim: understanding the relationship between qualitative changes in
the curve of COVID-19 cases and two government policy orders: ”Face Mask” and ”Stay at Home”.

Our analysis develops a Bayesian multivariate change point strategy (Verdinelli & Wasserman, 1995;
Consonni & Veronese, 2008; Bürkner, 2017; Wagenmakers et al., 2010; Muggeo, 2003; Wetzels
et al., 2010) to determine the distributional properties of the first change point in the evolution
of COVID-19 cases in the twelve states of the Midwest. The Midwest is defined as that region
situated in the north central United States that includes Illinois, Indiana, Iowa, Kansas, Michigan,
Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin (United States
Census Bureau). We provide an estimate and uncertainty quantification of the first change point and
we test the null hypothesis that the first change point occurs after ”Face Mask” and ”Stay at Home”
orders via the Savage–Dickey density ratio test.

We find that the first qualitative change in the COVID-19 curve in the Midwest states precedes the
”Face Mask” and ”Stay at Home” orders, with the possible exclusion of Illinois, where our analysis
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sets the first change point in between the two state orders. Going forward, this analysis underlines
the importance of prompt, reactive government decision-making in adopting non-pharmaceutical
interventions. As possible qualitative and dramatic variations of COVID-19 can be hard to predict,
it is critical that governments act rapidly to maximize effectiveness and avoid waste of possible
advancements such as vaccinations, whose results have been promising at the time of writing of this
paper (Polack et al., 2020; Knoll & Wonodi, 2021).

To be noted: We are not interested in the best overall fit for the evolution of the disease, while
we want to describe precisely the first time point where the slope of the curve of COVID-19 cases
changes substantially and position this with respect to two specific non-pharmaceutical interventions
(”Stay at Home” and ”Face Mask” orders). For this reason, we found it reasonable to develop a
simple segmented linear model (James et al., 2013), where the segments join at the change point.

The remaining part of this manuscript is organized as follows. Section 2 is dedicated to the methods,
Section 3 to our results and a discussion, while in Section 4, we draw our conclusions.

2 METHODS

In this section, we describe the data sources, the Bayesian models of change points that we are
considering, the Savage–Dickey density ratio test, and summarize our analysis.

2.1 DATA SOURCES AND SOFTWARE

The case counts by state were taken from the CDC (Centers for Disease Control and Prevention,
COVID-19 Response), beginning with the first case in Washington reported on January 22, 2020
until February 21, 2021. The state policies, including dates and information on the ”Stay at Home”
and ”Face Mask” orders, were taken from the COVID-19 US State Policy Database (CUSP) curated
by Boston University (Raifman et al., 2020). The analysis was performed using the software R and
its packages mcp and patchwork. All data is publicly available and code is available upon request.

2.2 BAYESIAN CHANGE POINT ESTIMATION

To estimate the change point we will use a Bayesian perspective. Although, the methodology can
be adapted to multiple change points, we will concentrate on the case of one single change point as
it is the only case reported in this manuscript. Consider a sequence of observations of an outcome
variable Y (in our case the COVID-19 case counts), given by y1, . . . , yT with T > 0 the time exten-
sion of our study (January, 22nd 2020 to February 21st, 2021) and t = 1, . . . , T the corresponding
time component. We model the mean response µ = E[Y ] with a piece-wise linear function such as
β1t+ β2 (t− ψ)+ , where (t− ψ)+ := (t− ψ) I (t > ψ) and I(·) representing the indicator func-
tion (Muggeo, 2003; Lindeløv, 2020). Here β1 is the slope at the left of the change point ψ and β2
is the difference-in-slopes between the slopes at left and right sides of ψ. We will estimate change
points and their level of uncertainty with the mean and standard deviation of their posterior distri-
bution via Montecarlo Markov Chain methods. The priors of all parameters are uninformative, with
the the exception of the prior for the change point which is restricted to be ordered monotonically
while otherwise remaining uninformative (Lindeløv, 2020).

2.3 SAVAGE-DICKEY RATIO TEST

In this subsection, we describe the Savage–Dickey density ratio, which is a method for Bayesian
hypothesis testing (Wagenmakers et al., 2010; Dickey & Lientz, 1970; Lindley, 1972; O’Hagan &
Forster, 2004; Wetzels et al., 2010; Verdinelli & Wasserman, 1995).

Suppose you observe data D and have the vector of parameters θ = (θ1, θ2) with θ1 the parameters
of interest, and θ2 nuisance parameters. Consider a null hypothesis, H0 : θ1 = h, with h a fixed
vector of hypothesized values of θ1. The alternative hypothesis isH1 : θ1 6= h. Denote p0 and p1 the
probability density distributions under H0 and H1, respectively. Suppose that limθ1→h p1(θ2|θ1) =
p0(θ2), then p1(θ2|θ1 = h) = p0(θ2). Consider the Bayes factor

BF01 := p(D|H0)/p(D|H1) = p0(D)/p1(D).
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Then

p0(D) =

∫
p0(D|θ2)p0(θ2)dθ2 =

∫
p1(D|θ2, θ1 = h)p1(θ2|θ1 = h)dθ2 = p1(D|θ1 = h),

which by Bayes’ rule leads to

p0(D) =
p1(θ1 = h|D)p1(D)

p1(θ1 = h).

In this way, we obtain the Savage-Dickey density ratio, namely the ratio between posterior and prior
distributions:

BF01 =
p0(D)

p1(D)
=
p1(θ1 = h|D)

p1(θ1 = h)
.

In our case, we are interested in the parameter θ1 = ψ, the change point, although other parameters
(eg. the two intercepts and two slopes) will be estimated as well. The observed data is D =
{(t, yt)}Tt=1. Note also that the hypothesis we are interested in is actually one sided H0 : ψ > hi
with i = 1, 2. In particular, we want to test if the change point ψ arrives after the ”Stay at Home”
order h1 or not, and if it arrives after the ”Face Mask” order h2 or not. For more information about
the Savage-Dickey density ratio test, we refer to (Lindeløv, 2020).

2.4 OUR ANALYSIS

We ran the algorithm described in Subsection 2.2 with K = 9000 iterations and 3 chains to estim-
ate the parameter ψ. Our outcome variable Y is taken on the log scale and represents the natural
logarithm of the cumulative case counts. We will have one Y for each of the twelve states in the
Midwest. We estimated the posterior distribution of the change point parameter ψ, computed its
posterior mean and its corresponding 95% credible interval for each of the twelve states in the Mid-
west. We compared this with the dates of the first case detected in each state and the dates of the
”Stay at Home” and ”Face Mask” orders. We performed the Savage-Dickey density ratio test to
make this comparison.

3 RESULTS AND DISCUSSION

In this section, we discuss our results. In Table 1, we collect the posterior means of the first change
point, together with the upper and lower limit of its 95% credible interval (all of them rounded to
the closest integer date) and the dates of the first case and ”Stay at Home” and ”Face Mask” orders.
Figure 1 illustrates the trajectory of COVID-19 cases, estimates of the change points, and the dates
of ”Stay at Home” and ”Face Mask” policy implementation for each of the Midwest states.

Illinois is the only state where we cannot reject the null hypothesis h1 and so we cannot exclude the
possibility that the first change point is subsequent to the ”Stay at Home” order. Note that Illinois
saw the first case much earlier than the other states and registered a plateau soon after. Possibly
related: Chicago is the biggest airline hub in the Midwest area by far, a fact that speculatively might
be responsible for this impetus for the earlier crackdown on mask use and movement outside the
home. The higher uncertainty of the estimate of the first change point in Illinois is possibly due
to this plateau occurring at the beginning of the epidemic. The change points of Indiana, Kansas,
Michigan, Minnesota, Ohio, and Wisconsin have been estimated to be before both governmental
policies were put in place. Iowa and North Dakota did not execute a ”Stay at Home” order, while
the ”Face Mask” order arrived much later than the estimated first change point. Missouri’s policy
recommended rather than required mask use, while its ”Stay at Home” order was much later than
the change point. Nebraska did not have a ”Stay at Home” order and they mandated face mask use
by employees only in public-facing businesses, and the first change point arrived before that. In
South Dakota, there hasn’t been any ”Stay at Home” order, while masks were encouraged, but not
required.

Altogether our results suggest that important government non-pharmaceutical interventions restrict-
ing movement outside the home and mandating the use of masks were put in place after a qualitative
change in the COVID-19 case trajectory had already taken place. Thus, these government mandated
policies were not a likely contributor to the observed first flattening in the curve of COVID-19 cases.
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State Illinois Indiana Iowa Kansas Michigan Minnesota
First Case 24-01 06-03 08-03 08-03 10-03 06-03

Stay at Home 21-03 25-03 NO 30-03 24-03 28-03
Mask 01-05 27-07 16-11 03-07 27-04 24-07

First CP 28-02 07-04 29-04 11-04 01-04 27-04
LB CI 22-03 06-04 27-04 10-04 31-03 21-04
UB CI 23-04 08-04 01-05 14-04 02-04 02-05
State Missouri Nebraska North Dakota Ohio South Dakota Wisconsin

First Case 07-03 06-03 12-03 10-03 10-03 03-03
Stay at Home 06-04 NO NO 24-03 NO 25-03

Mask NO 04-05 14-11 23-07 NO 01-08
First CP 04-04 02-05 14-04 06-04 21-04 01-04
LB CP 03-04 30-04 10-04 04-04 19-04 03-04
UB CP 05-04 04-05 18-04 07-04 23-04 05-04

Table 1: This table provides the dd-mm-2020 dates for all 12 Midwest states for: First Case of
COVID-19 (Row 1) , Stay at Home order (Row 2), Face Mask order (Row 3), First Change Point
(CP) ψ (Row 4), Date of the Lower Bound (LB) of the 95% Credible Interval (CI) for ψ (Row 5),
Date of the Upper Bound (UB) for the 95% CI for ψ (Row 6). NO indicates when an order was not
executed.

Figure 1: This figure illustrates the results of the Bayesian Change Point Analysis with comparison
to the dates of the ”Stay at Home” (Red Bar) and ”Face Mask” (Blue Bar) orders for each of the 12
states in the Midwest. Each state has two plots. Left Plot: The horizontal axis represents the time
variable, while the vertical represents the logarithm of the cumulative number of cases. Right Plot:
Represents the posterior distribution of the first change point ψ.

4 CONCLUSIONS

In this paper, we studied the problem of detecting the first change point in the curve of COVID-19
cases in the twelve Midwest states. We found evidence that there has been qualitative rate changes in
the diffusion of COVID-19 before the ”Stay at Home” and ”Face Mask” orders were implemented,
in all states but Illinois. This calls for possible quicker governmental actions. The analysis described
in this manuscript is descriptive and not predictive, associative and not causal. Moving forward, we
will attack those problems as well and to a larger scale. Note that although COVID-19 diffused with
a similar timing in the Midwest, non-pharmaceutical interventions were largely heterogeneous. This
would be a factor in extending our work to the detection of subsequent change points. A further
frequentist analysis confirmed our results but was not reported here due to space limitations.
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