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ABSTRACT

Kidney exchanges allow patients with end-stage renal disease to find a lifesav-
ing living donor by way of an organized market. However, not all patients are
equally easy to match, nor are all donor organs of equal quality—some patients
are matched within weeks, while others may wait for years with no match of-
fers at all. Knowledge of expected waiting time and organ quality affects medical
and insurance decisions. This work presents a principled method to estimate the
expected quality of the kidney that a specific patient who enters an exchange will
receive, as well as how long it will take to find that match. Estimation is performed
via a novel Bayesian-optimization-based approach that learns a model of a com-
putationally complex underlying Monte Carlo simulator. With a limited number
of expensive simulation trajectories, the model produces practically-applicable re-
sults. Such fast and accurate sampling could provide medical professionals near-
instantaneous access to valuable insight regarding a patient’s expected outcome in
a kidney exchange system.

1 INTRODUCTION

Renal disease affects millions of people worldwide, with a societal burden comparable to dia-
betes (Neuen et al., [2013). A patient with end-stage renal failure requires one of two treatments
to stay alive: frequent and costly filtration & replacement of their blood (dialysis), or the reception
of an organ transplant from a donor with one or more healthy kidneys. The latter option is often
preferable due to increased quality of life and other health outcomes (Santos et al., 2015). Donor
kidneys are obtained from one of three sources: the deceased donor waiting list, where cadaveric kid-
neys are harvested from deceased donors with still-healthy kidneys; ad-hoc arrangements between a
compatible living donor and a patient; and, recently, kidney exchanges — an organized market where
patients swap willing donors with other patients (Roth et al.l 2004; |2005a;b)). Kidney exchanges,
while still quite new, result in increased numbers and quality of transplants (Sonmez et al.l [2017);
furthermore, their design is a success story for fielded Al research (Abraham et al.| 2007} |/Ashlagi
& Roth, 20145 |Anderson et al., 2015} |Dickerson & Sandholm) 2015} [Hajaj et al., [2015} [Toulis &
Parkes|, |2015; Manlove & O’Malley, |2015). The act of getting a kidney transplant is time-sensitive,
and affects healthcare and lifestyle decisions; furthermore, the expected quality of the kidney—if
any—teceived by a patient affects the decision to accept or reject a particular match offer, and may
be used to (de)prioritize patients in a matching mechanism (Bertsimas et al.,|2013)). Thus, decision-
support systems that incorporate donor and patient features and quantify or predict the value of
a current or future offered kidney are valuable to practitioners. The Kidney Donor Profile Index
(KDPI) (Rao et al.[[2009) and the Living Kidney Donor Profile Index (LKDPI) (Massie et al., 2016)
are well-known and used to assess deceased- and living-donor kidneys, respectively. However, no
method/system exists to find the expected quality of a donated kidney in a kidney exchange.

This paper presents a Bayesian-optimization-based system that takes as input features of a patient
and their paired donor, and returns an estimate of (i) the expected quality of a match, and (ii) ex-
pected waiting time for a matched kidney offer. The use of modern tools from machine learning and
combinatorial optimization is required due to the NP-hard and APX-hard nature of even the most
basic problems in kidney exchange (Abraham et al.l |2007; Biré & Cechlarova, |2007; Bird et al.,
2009; Luo et al.L 2016; Jia et al., 2017). Our method uses a realistic but expensive black-box Monte
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Carlo simulator to produce estimates of match quality and time-to-match for a specific patient and
donor; it samples new points in the space intelligently, balancing overall computational time with the
accuracy of prediction for a new patient and donor. This prediction can be done in real or near-real
time, a requirement for such a decision-support system. We give a proof-of-concept implementation
on a reduced but realistic set of features in the kidney-exchange setting, and show that the method
learns the necessary functions well.

2 PRELIMINARIES

Deceased- & Living-Donor Kidney Allocation. Our motivation is, in part, due to the widespread
usage of the Kidney Donor Profile Index (KDPI) to quantify the value of deceased-donor kidneys,
and the increasing use of the newer Living Kidney Donor Profile Index (LKDPI) to quantify the
value of living-donor kidneys (Rao et al., 2009; Massie et al., 2016). Roughly speaking, both the
KDPI and the LKDPI are metrics used to compute the expected lifetime (quality) of a kidney trans-
plant. Both are based on multivariate Cox Regression models adapted from the statistics litera-
ture (Cox, [1992). The LKDPI was constructed such that LKDPI scores can be directly compared
with KDPI scores, and evaluates transplants based on both donor features (e.g., estimated glomeru-
lar filtration rate, body mass index), as well as features indicating donor-patient compatibility (e.g.,
blood type (ABO) and human leukocyte antigen mismatches). We expand this metric of quality to
fielded kidney exchange. Unlike a standard ad-hoc living-donor donation, in a donation through a
kidney exchange, the features of the end donor are unknown, and are generated through a stochastic
matching process. We aim to compute the expected LKDPI of the kidney received through kidney-
paired donation, and the expected matching time that it would take to receive this kidney, in order to
allow for comparison between the living donor, deceased donor, and kidney-paired donation options.

The Formal Kidney-Exchange Model. The most-used model represents a kidney exchange as a
directed graph G = (V| E), called a compatibility graph. Here, each patient and their paired donor
who enter the pool are represented as a single vertex. Then, a directed edge is drawn from vertex
v; to vertex v; if the patient at vertex v; wants the donor kidney of vertex v;. Weights w, € R
represent the utility of an individual kidney transplant represented by an edge e, and are also used to
(de)prioritize specific classes of patient (Dickerson et al.,[2014; [UNOS| 2015).

A matching M is a set of disjoint cycles and chains in a compatibility graph G; M € M, the set of all
legal matchingsﬂ No donor can give more than one of her kidneys, necessitating the disjointness of
cycles and chains—although recent work explores multi-donor donation (Ergin et al.,|2017; [Farina
et al., [2017). Given the set of all legal matchings M, the clearing problem finds the matching M *
that maximizes utility function v : M — R (e.g., for maximum weighted matching, u(M) =
Y eem Doece We). Formally: M* € argmax,c r, u(M). Ongoing research in the Al/Economics
literature uses utility functions to enforce incentive properties via mechanism design (Ashlagi &
Roth, 2014} L1 et al.l 2014; Hajaj et al.| 2015} [Blum et al., |2017; Mattei et al., [2017). Finding a
maximum weight (capped-length) cycle and chain packing is NP-hard (Abraham et al., 2007} |[Biro
et al.,2009), and is also hard to approximate (Biré & Cechlarova, 2007; [Luo et al., [2016} [Jia et al.,
2017). In practice, integer program (IP) formulations are used to clear large exchanges (Abraham
et al.L[2007;|Dickerson et al., 2013}, |Glorie et al.,[2014;|Anderson et al.,2015; Dickerson et al., 2016).

The kidney-exchange system is dynamic. In each iteration, new patients enter the pool, current pa-
tients may leave due to competition from other methods for receiving a kidney or death, and edges
may appear or disappear based on the health characteristics of participants (e.g., pregnancy or sick-
ness, leading to a change in compatibility with potential donors). Furthermore, the matching process
is highly stochastic. In fielded kidney exchanges, matches are made without detailed knowledge of
compatibility between a donor and patient. More-thorough physical crossmatch tests are done after
an algorithmic match, but before the actual transplantation event, to ensure that a matched donor
can donate to a paired patient. Even one failure of an edge in a cycle invalidates the entire cycle;
similarly, given the incremental execution of chains, all potential transplants located after the first
edge failure in a chain are invalidated.

'In fielded kidney exchanges, cycles are limited in size to, typically, 3; all surgeries in a cycle must be
executed simultaneously, so longer cycles are nearly impossible to plan. Chains, however, can be much longer
(or effectively endless) in practice.
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Figure 1: Estimating LKDPI and waiting time using Bayesian optimization

3 ESTIMATING MATCH TIME AND QUALITY

We return to our initial motivation—creating a decision-support system that quickly and accurately
estimates to a patient and paired donor the expected waiting time and offered organ quality. Our
approach consists of two components: a realistic (but computationally expensive) simulator capable
of sampling patient trajectories in the exchange, and a Bayesian-optimization-based active-sampling
framework that learns the underlying model of the simulator for real-time prediction.

Simulating the Kidney Exchange. Due to limitations in the availability of data, we consider a
simplified kidney-exchange where edge weights in the compatibility graph are computed based on a
patient’s blood type, their potential donor’s blood type, their paired but incompatible donor’s blood
type, and the respective CPRA (described next) of all involved parties (patient, paired donor, poten-
tial donor) Although the feature set is simplified, we are able to draw from a reliable approxima-
tion of their joint distribution using data from the OPTN Standard Transplant Analysis and Research
dataseﬂ which contains the biological information of donors and patients—including pre- and post-
transplantation event information— in conjunction with a modified graph structure generator from
the medical literature due to|Saidman et al.|(2006). Here, the Calculated Panel Reactive Antibodies
(CPRA) is a continuous-valued score in [0, 1], roughly representing the fraction of donors, drawn
from a general population, that would not be a match for a particular patient (e.g., a score of 1 sig-
nals extreme difficulty in matching). We let matches take place on a weekly basis, and cap the total
match-time at 250 weeks. The pool is instantiated with an initial graph size of 250 patient-donor
pairs and 10 altruists. Each time period, we draw from an arrival distribution of new vertices, and
conduct crossmatch tests between each pair of vertices to determine the edges of the compatibility
graph. Vertices expire with constant probability each iteration, and matches from the previous itera-
tion are accepted with probability geometric in the number of edges. At the end of the iteration, we
invoke an IP-based codebase (Dickerson & Sandholml [2015)) that solves the NP-hard optimization
problem from to generate new matchesE] This model is standard in the realistic-kidney-exchange
simulation literature (Saidman et al.l |2006; /Anderson et al.l 2015} |Dickerson & Sandholm, 2015)).

A Bayesian-Optimization-Based Approach. One may naively estimate match time and transplant
quality for a given patient by calling the simulator many times and aggregating the results. However,
due to the aforementioned computational complexity of the simulator, this naive approach may not
be executed quickly enough for real-time estimation. To remedy this issue, we propose an active-
sampling approach based on the Bayesian Optimization (BO) framework that predicts the output of
this naive approach. BO utilizes Gaussian processes (GPs) to maximize an unknown function—in
our case, the expected output of a realistic, but noisy and expensive to run, simulator of a real-
world process. In BO, an acquisition function is used to select the next point at which to sample that
would, typically, lead to an accurate estimate of the maximum of that function. A kernel (covariance)
function is used to interpolate between known values of the function, and determine the confidence

2For a discussion of all features that are included in a large, real-world kidney exchange due to the United
Network for Organ Sharing (UNOS), we direct the reader to a white-paper from that group (UNOS| [2015)).

3Request al https://optn.transplant.hrsa.gov/data/request-data/

4 After the double-blind review period concludes, we will make our repository containing all code to repli-
cate experiments in this paper publicly available.
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Figure 2: MAEs over Figure 3: MAEs for the Figure 4: Learned GP Figure 5: Comparison
all blood type pairs AB-O pair for the AB-O pair models for AB-O pair

at each point. While BO offers a method to maximize a function where getting output is time
consuming, we learn the expected transplant quality/waiting time as a function of the features of the
patient-donor pair using this method by taking as output the GP of the BO. We use this framework
to choose informative input patient-donor pairs that we then simulate to obtain sample statistics on
waiting time and transplant quality. We model the waiting-time and quality functions by a Gaussian

. p')2
automatic relevance determination kernel k(x,x’) = exp (—% Zil %) The lengthscale

hyperparameters ¢; determine the relevance of each dimension in determining the covariance.

We then select the point x that the GP is “least certain” about by letting the acquisition A be given
by the posterior variance. Without hyperparameter optimization, the posterior variance of the GP
depends only on the previous inputs that were chosen, and does not take into account the output in-
formation. We incorporate the output information in a principled way by approximating the expected
posterior variance using the posterior distribution p of the hyperparameters ¢; given the observed
data. That is, we let A(x) = E(y,, _,)~ploz]. We make such an approximation efficiently by
using Hamiltonian Monte Carlo, a physics-inspired Markov Chain Monte Carlo technique (Duane
et al., [1987). We implemented our method by modifying GPyOpt (GPyOpt, [2016)), an open-source
Bayesian-optimization platform.

Experiments. Due to the simplified feature set that we use in our simulator, the LKDPI turns out
to be independent of the input features. Thus, we validate our approach on the waiting time. For
all 16 blood-type-pair combinations for donor-patient pairs who enter the exchange, we performed
Bayesian optimization over patient CPRA for o = 50 iterations. For each blood-type-pair combina-
tion, waiting time is estimated based on an aggregation of = 48 trajectories in a realistic simulator.
Figure[T] gives a graphical description of our setup. After constructing the GPs through BO, we test
them by comparing the match time returned by the GP and the match time returned by the realistic
simulator after s trajectories. To test the 16 generated GPs, the domain of CPRA [0, 1] is partitioned
uniformly into 4 zones {[0, .25), [.25,.5), [.5,.75),[.75,1)}. In each zone, 5 random trials are done,
with s = 128 trajectories each. We test the system with s > r in order to measure the ability of the
model to make good estimations of the expected value even with more noisy input. As no baseline
exists to validate our method, we show that our approach can produce clinically promising esti-
mates relative to common regression models in the Scikit-learn framework (Pedregosa et al.,[2011).
E] Figure |2 shows that our approach makes clinically promising estimates over all blood types and
CPRAs. Other methods, while performing well on easy-to-match patients with low CPRA, make
comparatively poor estimates for the harder-to-match patients. This difference is more apparent for
the hardest-to-match (AB-donor, O-patient) pair. Our approach clearly outperforms other methods
for this pair (Figure 3], and fits the collected data more robustly (Figures @] and[3).

While our proof-of-concept demonstrates the promise of this system in a reduced environment, be-
fore making a policy recommendation or deploying a support tool in practice, we note the following:
(i) The number of trajectories r should be (much) greater, for greatly reduced stochasticity, and thus
far smaller mean residuals from the GP to the realistic simulator. (ii) The number of features consid-
ered should be much higher, and informed by experts in the field. Yet, given these proof-of-concept
experimental results, we feel confident that a decision-support system can be deployed for use by
practitioners, in order to give patients and donors this information on demand.

SWe compare against random forests, isotonic regression, kernelized support vector regression, and multi-
layer perceptrons. All models were tuned with 200 iterations of randomized hyperparameter optimization.
None of these models are capable of learning the underlying noise model of the function, which is of clinical
importance, as it allows stakeholders to know the margin of error on the expected-waiting-time estimate.
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