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ABSTRACT

Poor sleep quality has been linked to several chronic, psychiatric, and neurolog-
ical conditions that can burden the public health system. This paper aims to de-
velop methods to assess sleep quality from physical activity data collected from
wearable devices. Our methods can be deployed on a large scale and used by rec-
ommender systems to guide the public towards higher quality sleep, hence a better
life quality.

1 INTRODUCTION

Despite its ample public health impact, sleep health is rarely considered by policy makers whose
policies and structures can adversely affect sleep (Jackson et al., 2015). The regularity, quantity and
quality of sleep have been linked to a plethora of health and cognitive outcomes, such as memory
consolidation or the removal of free radicals and neurotoxic waste (Stickgold, 2005; Inoué et al.,
1995; Xie et al., 2013). Similarly, insufficient or disturbed sleep has been associated with a broad
range of chronic, psychiatric and neurological disorders such as depression, anxiety, obesity, dia-
betes, anorexia, alcoholism, Alzheimer’s or Parkinson’s disease (Papadimitriou & Linkowski, 2005;
Wulff et al., 2010; Simon et al., 2020).

Historically, the gold-standard method to monitor sleep and diagnose a subset of sleep disorders is
polysomnography (PSG). While the value of polysomnography is unquestionable, it suffers from
scalability issues due to its cost, requirement of trained staff for set-up and analysis and burdensome
nature. PSG usually only entails one or two nights of recording in a foreign and often uncomfortable
environment, limiting its use for the longitudinal characterization of an individual’s sleep. Epidemi-
ologists have traditionally employed sleep diaries and questionnaires for the longitudinal assessment
of sleep to understand its role in a variety of diseases. While valuable in the lack of alternatives, these
reports tend to suffer from recall bias and often provide partial information (Rosenman et al., 2011).
As a result, longitudinal population studies have started to incorporate objective measures of human
behaviors through wrist-worn actigraphy or accelerometers (Sudlow et al., 2015; Doherty et al.,
2017; Perez-Pozuelo et al., 2019). Consumer-grade wearable devices continue to grow in popularity
and their multimodal sensors, often including accelerometry, heart rate measurements through pho-
toplethysmography and gyroscopes, make them attractive candidates to measure physical activity
and sleep at scale and unobtrusively (Perez-Pozuelo et al., 2020). Recent work has systematically
evaluated the performance of traditional heuristic, machine and deep learning approaches for sleep-
wake and sleep-stage classification, showing the strengths and limitations of wrist-worn wearable
sensors (Palotti et al., 2019; Yuda et al., 2017; Zhai et al., 2020). These studies show the potential
of wearable devices to monitor physical behaviors and sleep at scale, which have important impli-
cations not only for the understanding of the role of sleep in disorders but also for designing and
implementing interventions based on objectively measured behaviors.

An important area in which such devices shed light is the relationship between physical activity (PA),
sedentarism and sleep. Most seminal studies on this area rely on self-reported measures of sleep
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and PA. For instance, in clinical trials, PA has been associated with better subjective and objective
sleep (Kredlow et al., 2015). This finding has been replicated in epidemiological studies which
showed that physically active individuals had higher sleep duration, efficiency, and quality (McClain
et al., 2014; Lang et al., 2013; Kline et al., 2013; Master et al., 2019). PA has also been linked to
lower risks of insomnia (Spörndly-Nees et al., 2017) and daytime sleepiness (Theorell-Haglöw et al.,
2015). Recently, physically active individuals were shown to have better sleep efficiency than their
sedentary counterparts in a study that objectively measured PA and sleep (Gubelmann et al., 2018).

We set to develop a method that leverages wearable devices’ capabilities to objectively monitor PA
and make inferences with regards to sleep quality metrics. Identifying and understanding how dif-
ferent behaviors may impact sleep quality provides insight into how behavioral changes could help
individuals improve a future night’s sleep, which, in turn, would impact their overall health. Our
work is guided by the motivation to develop a method that can be deployed in large-scale, longitu-
dinal cohorts and used to assess and improve (through future recommender systems) an individual’s
sleep quality continuously.

This paper introduces findings for our ongoing research. Here, we: (1) propose the use of an open
and large dataset for sleep quality inference based on PA; (2) study metrics used for sleep quality
inference and introduce a new multi-dimensional metric; (3) study how different representations
of PA influence predicting the same night sleep quality. Our goal is to lay the foundations for
understanding and quantifying the bi-directional relationship between sleep and physical activity.

2 METHODS

Dataset The increasing volume of research in mHealth often leads to contradictory findings (Mu-
nafò et al., 2017). Many studies suffer from small or constrained sample sizes which are only
representative of a small part of the population (Button et al., 2013). Also, most datasets and their
transformations tend to be not as open as in other research disciplines, severely impeding repro-
ducible progress. The success of machine and deep learning methods largely depends on the quality
and size of the data, making the use of large, diverse datasets particularly important (Banko & Brill,
2001). To ensure transparency and reproducibility, our experiments were carried in one large open
dataset: the Hispanic Community Health Study (HCHS). HCHS is a community-based cohort study
of 16,415 Hispanic/Latino adults 18–74 years old recruited from randomly selected households at 4
U.S. field centers between 2008 and 2011. This study has been described in detail in (Sorlie et al.,
2010; LaVange et al., 2010). As part of the HCHS, the Sueño sleep ancillary study from 2010 to
2013 recruited a total of 2,252 participants. The study had two parts, with an average of 6 years in
between each. In the first part, in-home PSG data was collected using an Apnea Risk Evaluation
System. The participants were given questionnaires on their sleep habits, demographics and medical
history. In the second part, wrist-worn actigraphy data for 1,887 participants was collected over a
7-day period using an Actigraph Spectrum device by Philips Respironics.

Data processing Phillips Actiwatch Spectrum actigraphs were used to collect 30-second resolu-
tion activity and light data in the HCHS dataset. This data was evaluated by expert scorers using a
standardized approach to set rest intervals that relied on activity data, event markers, sleep diaries,
and light intensity (Patel et al., 2015). For each day, rest intervals were identified by the scorer
based on those diaries, lights and habitual patterns in the data. For our work, we need to identify
one “day”, defined as an active period followed by a sleep period. The sleep period is determined
by taking the longest rest segment from 3 PM to 3 PM of the next day, and recursively appending
preceding and succeeding rest segments as long as they occur less than 120 minutes apart (including
segments in between). The active period is in between sleep periods. Non-wear periods are defined
as zero count intervals of at least 90 minutes, allowing for 2-minute intervals of nonzero counts
(accounting for artifact movement) surrounded by 30-minute intervals of zero counts, as defined by
the Choi algorithm (Choi et al., 2011). To retain only high quality and reliable data, we opt for a
strict data preprocessing and exclude days which: have more than 180 minutes of non-wear during
the active periods; sleep periods are extremely short (≤ 3H) or long (≥ 12H); or account for less
than 20 hours. Also, participants with less than 5 consecutive days of recording were excluded. A
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Table 1: Sleep metrics, their description, age-divided clinical recommendations (�: recommended,
�: may be appropriate, �: not recommended) and an example of their importance for health and
well-being. These recommendations are used as classes in the classification task proposed here.

Metric Definition and Medical Implications Age Implementation

TST Total sleeping time during the nighttime (hours). Clinical
implications in hypertension (Meng et al., 2013)

≤5:59 6-6:59 7-7:59 8-8:59 9-9:59 10-10:59 ≥11
18-25
26-64
≥ 65

SEF
The percentage of time slept by an individual
SEF = 100.× TST

TotalTimeInBed (SEF ∈ {0..100})
Disease activity in spine inflammation (İn et al., 2016)

<65 65 - 69 70 - 74 75 - 79 80 - 84 85 - 89 ≥90
18-25
26-64
≥ 65

AWA
Total number of awakenings in the nighttime (i.e. arousal
lasting ≥5 minutes after sleep offset (Ohayon et al., 2017).
Effects on glucose metabolism (Stamatakis & Punjabi, 2010)

0 1 2 3 ≥ 4
18-25
26-64
≥ 65

CMB We combine the scores of the metrics above by summing them
up according to the following scores: 0 (�), 1 (�), or 2 (�). All 0 1 2 3 4 5 6

total of 1,529 participants with 10,091 unique days from the HCHS study were included in our final
analysis. The data processing was conducted with the Python package HypnosPy1.

Sleep Quality Metrics The term “sleep-quality” often lacks a formal definition. Frequently, sleep
quality is assessed through self-reporting, despite being highly subjective. One limitation of self-
reports when assessing sleep quality is the loss of consciousness during sleep, which makes individ-
uals poor self-observers of this particular behavior (Ohayon et al., 2017). Seeking more objective
measures, the National Sleep Foundation (NSF) assembled an expert panel to survey the literature
and recommend indicators of sleep quality (Hirshkowitz et al., 2015; Ohayon et al., 2017). They
compiled sleep metrics divided into three categories (“recommended”, “may be appropriate” or “not
recommended”) depending on the subject’s age. In our work, we use three of NSF’s metrics that
can be reliably extracted from actigraphy devices: total sleep time, sleep efficiency, and the number
of awakenings longer than 5 minutes after sleep onset. We also explore the multidimensional nature
of sleep by proposing a composite measure for sleep quality that combines the three. These metrics
and examples of how they are used for evaluating sleep and related disorders are provided in Table 1.

Machine Learning Methods Using the metrics in Table 1, we model the problem of sleep quality
inference as a multi-class classification task with “recommended”, “may be appropriate” and “not
recommended” as labels. Our goal is to explore possible PA patterns, using them as features to
predict each of the four sleep quality metrics. We evaluated several classifiers, from linear mod-
els (Linear Discriminant Analysis and Logistic Regression) to tree based and boosting techniques
(Random Forests, Extremely Randomized Trees, XGBoost, CatBoost and LightGBM).

Our models were evaluated using common metrics in machine learning and medical sciences,
namely: accuracy, Macro F1 score, and the Matthews Correlation Coefficient (MCC). We chose
MCC as our main metric because it is a more reliable, informative and truthful score than traditional
accuracy and F1 score (Chicco & Jurman, 2020). As a correlation metric, MCC varies from -1
(worst) to +1 (best) with 0 meaning no correlation.

We divided the HCHS dataset into 11 folds with roughly the same number of participants each, such
that a participant’s data is fully contained in a single fold. One of the folds was chosen as a held-
out test set. The other ten folds were used for cross-validation, employing a hyperparameter search
using the random search technique with 50 steps optimized for MCC (Bergstra & Bengio, 2012).

Feature sets and data transformations We consider a total of 723 PA features divided into four
sets: statistical, autoencoder generated, intensity level, and circadian. The raw data obtained from
actigraphy devices is given in activity counts per minute (CPM). The statistical features for the active
period in a day are the overall and hourly maximum, minimum, mean, standard deviation, number
of unique values, skewness, and kurtosis, of the raw CPM data. Autoencoder generated features are
obtained from the bottleneck layer of linear autoencoders (AE) and variational autoencoders (VAE)
trained on the daily mean CPM per hour. The models were trained with multiple linear layers with
ReLU activation to minimize an L1 reconstruction loss. This was done to decrease input dimension-
ality, while retaining the meaningful information about the PA performed in a day (Esteban et al.,
2017). Intensity levels are computed following a device-specific, validated conversion from CPM
to four activity levels: sedentary, light, moderate and vigorous (Lee & Tse, 2019). The features

1https://github.com/HypnosPy/HypnosPy/
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Table 2: Training (n=9,164) and test (n=927) results for multi-class classifiers trained to predict
sleep quality given the same day physical activity.

HCHS Experiments Training 10-CV (Mean Std) Test (% Better/Worse than Baseline)
Experiment Model Target Accuracy Macro F1 MCC Accuracy Macro F1 MCC

Baseline Most
Freq

SEF .69 ± .02 .27 ± .00 .00 ± .00 .69 .27 .00
AWA .56 ± .02 .24 ± .01 .00 ± .00 .56 .23 .00
TST .40 ± .01 .19 ± .00 .00 ± .00 .39 .19 .00
COM .47 ± .02 .21 ± .01 .00 ± .00 .45 .21 .00

PA Features

CATB SEF .82±.01 .66±.03 .58±.03 .83 (20%) .70 (158%) .60 (+.60)
LGBM AWA .67±.01 .58±.03 .40±.02 .66 (20%) .60 (151%) .40 (+.40)
XGB TST .76±.02 .75±.01 .63±.03 .78 (97%) .78 (314%) .66 (+.66)
XGB COM .72±.01 .67±.02 .53±.02 .70 (55%) .64 (209%) .49 (+.49)

used are the aggregated version of intensity levels (bouts of 1, 5, 10 and ≥ 20 minutes) following
well-established PA guidelines (Pate et al., 1995). Circadian features are the following parameters
extracted from the cosine function fitted to the CPM data: mesor (circadian rhythm-adjusted mean),
cycle amplitude (half the distance between minimum and maximum values), cycle acrophase (the
time of the day where the circadian cycle reaches its maximum) (Cornelissen, 2014; Moškon, 2020).
Disruption of circadian rhythm has been associated with adverse health outcomes such as insomnia
or circadian rhythm sleep disorders (Davis & Mirick, 2006; Sack et al., 2007a;b).

We ran experiments using each feature set individually, and their combination. However, we only
report the results using the combination of all four feature sets since they performed the best.

3 RESULTS AND DISCUSSION

The classification results in Table 2 show the average MCC, accuracy, and Macro F1 on the cross-
validated training set and its comparison to a baseline that always selects the most frequent class.
Observe that correctly estimating the number of awakenings (AWA) is the most challenging task,
with the lowest MCC (0.40). Compared to the baseline, this was also the sleep quality metric with
the least gains for all other evaluation metrics. The MCC results for sleep efficiency (SE), total sleep
time (TST), and the combined score (COM) are in the same range.

Other works focused on predicting exclusively sleep efficiency (Fellger et al., 2020), which, in terms
of accuracy, is the most straightforward metric to predict. We argue, however, that other sleep met-
rics are equally important to evaluate sleep quality. Because of that, the combined score is a better
representative of the multidimensionality of sleep. As its prediction performance is competitive in
relation to sleep efficiency, this is a promising measure to predict the overall sleep quality.

Despite experimenting with several complex machine learning algorithms, the Logistic Regression
(LR) classifier outperformed all others in the four sleep quality metrics. We performed an ablation
study (not shown) to understand each feature set’s importance and found that the statistical features
were the most influential. The mean amount of PA and the PA distribution skewness were among
the top-ranked features for all sleep metrics.

There are many avenues to continue and expand this work. We plan to incorporate features extracted
from demographics and questionnaires conducted during the study. We also plan to explore other
machine learning models, such as stacking denoising autoencoder for automatic feature extraction
from PA; and modeling a pure neural network end-to-end, potentially with multiple prediction heads
for the four sleep quality metrics. Last, we would like to explore longitudinal predictions. Unfor-
tunately, studies with actigraphy devices, such as HCHS, MESA (Dean et al., 2016) or the UK
Biobank (Fatima et al., 2020), are limited to a single week. To circumvent this limitation, we should
explore commercial wearable devices in our future work.

In conclusion, this work is based on clinically validated sleep quality metrics on highly trustwor-
thy open data that provides a reproducible benchmark for future evaluation and exploration of the
bi-directional relationship of sleep and physical activity. To ensure transparency and facilitate repro-
ducibility of our results, our code is available on https://github.com/HypnosPy/sleep_
pa_interaction.
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reviewing the text and type-setting the manuscript.

4

https://github.com/HypnosPy/sleep_pa_interaction
https://github.com/HypnosPy/sleep_pa_interaction


Published as a workshop paper at ICLR-AI4PH 2021

REFERENCES

Michele Banko and Eric Brill. Scaling to very very large corpora for natural language disambigua-
tion. In Proceedings of the 39th annual meeting on association for computational linguistics, pp.
26–33, Toulouse, France, 2001. Association for Computational Linguistics.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(Feb):281–305, 2012.

Katherine S Button, John PA Ioannidis, Claire Mokrysz, Brian A Nosek, Jonathan Flint, Emma SJ
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