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ALL YOU NEED IS CELL ATTENTION: A CELL ANNO-
TATION TOOL FOR SINGLE-CELL MORPHOLOGY DATA

ABSTRACT

The purpose of this paper 1 is to invent a unifying approach capable of imag-
ing single-cell morphology of thousands of peripheral blood cells and data-driven
learning of characteristic morphology indicative of the presence of the disease. We
introduce a lightweight novel family of deep hierarchical network architectures,
called AttentionNet. Currently, most methods take manual strategies to annotate
cell types for single-cell image processing. Such processes are labor-intensive
and heavily rely on user expertise, which may lead to inconsistent results. At-
tentionNet aims to combine lighter-weight layers, K Means++ techniques in pre-
processing, and GBCIOU multi-object segmentation to achieve a nearly-semantic
segmentation for cells with lower computational cost and complexity. Its goal is to
eliminate artifacts on the sampled cell images due to different experimental condi-
tions, such as lighting conditions, various empirical objects and noise deviations,
ensuring more advanced classification.

1 RELATED WORK

Early diagnosis of cancer is a crucial determinant of patient outcome. However, current existing
state-of-the-art approaches on cancer diagnosis are only of limited use in deriving a morphological
signature in a diagnostic trial, since they often require a cell type annotation for every single-cell
image. Labeling for large dataset in actual cancer detection is very time-consuming and resource-
intensive. Unsupervised learning or weakly supervised learning methods are often hard to be applied
on clinical medical cancer detection because of insufficient accuracy. However, recent developments
in neural network architecture design and training strategies have enabled researchers to solve pre-
viously intractable learning tasks.

Figure 1: Manual annotation and AttentionNet labeling. (a) Typical cell annotation by aerobiol-
ogy experts, cell images from the largest dataset of microscope pollen grain (Battiato et al., 2021),
ICPR 2020 Pollen Grain Classification Challenge. More than 13,000 objects have been detected and
hardly labeled by aerobiology experts. (b) Our method for cell artifact elimination and annotation.

Deep learning-based approaches have become very successful in addressing a wide range of biomed-
ical image analysis tasks such as detection of skin cancers from photographic images (Esteva et al.,
2017), detection of pneumonia on chest X-rays (Rajpurkar et al., 2017), detection of breast cancer
metastases in histopathology images and many others (Angermueller et al., 2016). Another widely
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Figure 2: The illustration of the necessity of Attentionnet segmentation for Sezary Syndrome
Dataset. First column: original cell image. Second column: saliency map of ResNet18 (He et al.,
2016) on the original image. Third column: original cell image after taken the AttentionNet segmen-
tation. Fourth and fifth columns: saliency map of ResNet18 and VGGNet (Simonyan & Zisserman,
2015) after AttentionNet segmentation. Leading SOTA models are more focused on non-cell fea-
tures and the debris feature. After segmentation and image pre-processing, the noise information
was removed and only keep the cell’s morphological characteristics. It decreases the computational
cost and improves reliability and accuracy.

used approach in biomedical image segmentation is U-Net (Ronneberger et al., 2015). They pro-
posed a net and training strategy that relies on the strong use of data augmentation in order to utilize
the less available annotated samples more efficiently (Ronneberger et al., 2015).

Furthermore, single-cell analysis might require thousands or even millions of cells analyzed by
researchers and clinicians. For example, we received nearly millions of sezary sample images,
as in Figure 2. However, characterizing thousands and millions of cell types and cellular states
from a complex cell noisy data set is a considerable challenge. These leads to numerous labor-
intensive work and expert supervision. SingleR (Aran et al., 2019) infers the cell type for each of
the single cells using a novel hierarchical clustering method based on similarity. Similarly, scMatch
citepHou annotates single cells by identifying their closest match in gene expression profiles of
a large reference dataset. However, such approaches require ideally under the same experimental
design using the same platform, which is often not available (Cao et al., 2020).

2 METHOD

For biomedical image processing, different experimental conditions, such as lighting conditions and
various empirical objects, noise deviations are likely to appear on the sampled cell images (Guenova
et al., 2015). That noise and variability in the background would be confounding variables. When
applying AttentionNet, we explicitly learn features focusing on the morphology structure of the
cell. We mainly design the unifying approach for sezary cell diagnosis, an aggressive cutaneous T
cell lymphoma characterized by tumor T cells with abnormal nucleus morphology in the peripheral
blood (Guenova et al., 2015). Hence, we assume that after AttentionNet segmentation, convolutions
are more likely to learn feature representations, particularly for cell objects, as only the cell objects
are preserved.

2.1 ATTENTIONNET

AttentionNet discards the Darknet (Redmon & Farhadi, 2018) part of the original YOLO (Redmon
et al., 2016), i.e., a multi-convolutional stacked layer, and relies on only two YOLO output layers.
The original YOLOv3 (Redmon & Farhadi, 2018) used the Darknet front-end feature extraction
module, but the detection performance on the Sezary Syndrom dataset is unsatisfied. On the con-
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trary, AttentionNet with only 13×13, 26×26 YOLO scale output tensors adopts multi-scale fusion,
and K means++ clustering 1 techniques, outperforms TF-Yolo (He et al., 2019) and YOLOv3 (Red-
mon & Farhadi, 2018), which occupied 13 × 13, 26 × 26, 52 × 52 YOLO scale output tensor. In
order to train a suitable segment, it is recommended to choose corresponding scale tensors that refer
to different data sets. Another novelty of our method is that we performed K-means++ Clustering in
pre-processing. Instead of using the prior nine boxes given by YOLOv3 (Redmon & Farhadi, 2018)
trained on the COCO dataset, for our customer dataset, it is more important to give the network the
prior knowledge of ground truth box. Utilizing a small subset of the manually annotated cell, we
can improve GIOU (ground truth box position, prediction box location) score. It will further achieve
higher accuracy.

Then, the GBCIOU and Circle segmentation algorithm (See. Alg 3) will essentially be applied to
convert the bounding box to nearly semantic cell prediction while guaranteeing user-defined char-
acter requirements of the cell structure. Using the cvfillPoly function we can easily classify the
cell image into unaffected polygonal areas and achieve high-speed segmentation once we obtain the
output of bounding box detection, namely (x1, y1, x2, y2). However, it has undeniable shortcom-
ings that the shape of segmentation does not perfectly approximate the ground truth of the cell. To
overcome this problem, we proposed an HSV space mask threshold method. It quietly converted to
HSV space and use a threshold to eliminate the outside part of the central circle of box detection.
For the common challenge of the YOLO original version (Redmon et al., 2016): when multiple
objects are standing in the same area or overlapping on the central point, it will become problematic
to draw the correct prediction and always leads to wrong labeling. If multiple cells occur and one
cell has a more competitive confidence score than another during circle detection, that will lead to
either non-labeled or partly labeled problems (See Figure 4).

We proposed the GBCIOU (See. Alg 3) to ideally find a general intersected box center when mul-
tiple box predictions occur in the same image, in addition to the GIOU (See. Alg 2) computes the
deviation between ground truth and the prediction. The attributes of self-detection and labeling, of
nearly real-time resolve, and general resource requirements mainly characterize the AttentionNet.

3 EXPERIMENTS

To compare our methods on the Sezary Syndrom dataset, we adopted most of those evaluation
schemes from the original YOLOv3 (Redmon & Farhadi, 2018), such as Confusion Matrix Pre-
cision and Recall, F1 Score, mAP, the IOU, and Classification Loss (See Figure: 3). Moreover,
combining Area Under the PR curve leads to conclusive quality metrics paying attention to various
aspects (See Figure: 7). We further acknowledge the resource limitation and time cost for a software
application in real scenarios usages. We then analyzed the time cost in different GPU availability
and computation FLOPs (See Figure: 5).

3.1 ATTENTIONNET ON SEZARY SYDROME DATASET

Figure 3: The train performance of AttentionNet based on manually labeled 1500 cell images.
Here, we try to calculate the recall, precision, objectiveness loss, and classification loss in the binary
classification (sezary cell/noise) scenario after each epoch. The P-value is nearly 85%, and the
mAP@0.5 reaches almost 88%.
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Figure 4: Experiments on GBCIOU for multiple predictions occur in same cell image. The
first left column stands for original cell bounding box detection by YOLO based network such as
(Redmon & Farhadi, 2018) (Redmon et al., 2016), especially multiple cells overlapping or present
in the same frame. The second column represents with the help of GBCIOU circle segmentation
comparing to without GBCIOU in the third column. With the help of GBCIOU, it obtains the best
segmentation performance on cells.

Figure 5: Time cost of AttentionNet cell segmentation per image on Google Colab. Overall the
average time cost for the AttentionNet segmentation on validation set is 0.80 seconds per image (
generated both segmented image and annotation file of cell location ). In comparison, the manual
method costs an experienced lab assistant around one week to annotate 1500 images. We performed
this experiment on Google Colab Tesla V100 16GB.

4 CONCLUSION

Currently, for cell sample data, manual annotation is unrealistic and consumes more energy and re-
sources. There are often even more noise spots on cell images due to the clutter of data. Our YOLO-
based cell annotation and segmentation tool can quickly annotate images while eliminating the noise,
thus improving cell classification reliability. The experiments conducted on benchmarks illustrate
that an AttentionNet method is a plug-and-play tool for SOTA module for data pre-processing tasks
with remarkable speed as shown in Table: 2 and Figure: 5. However, when facing even more com-
plicated scenarios such as multiples cell morphology data or irregular shape cell data is still quite
problematic for us. It is open question for us to move forward. Here, we also provide our software,
which has won second place in the Deecamp2020 Medical Track Competition. Software code.
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2020. Springer, Cham, 2021. accepted.

Yinghao Cao, Xiaoyue Wang, and Gongxin Peng. Scsa: A cell type annotation tool for single-cell
rna-seq data. Frontiers in Genetics, 11:490, 05 2020. doi: 10.3389/fgene.2020.00490.

Andre Esteva, Brett Kuprel, Roberto Novoa, Justin Ko, Susan Swetter, Helen Blau, and Sebastian
Thrun. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542:
115–118, 01 2017. doi: 10.1038/nature21056.

Emmanuella Guenova, Desislava Ignatova, Yun-Tsan Chang, Emmanuel Contassot, Tarun Mehra,
Ieva Saulite, Alexander Navarini, Reinhard Dummer, Dmitry Kazakov, Lars French, Wolfram
Hoetzenecker, and Antonio Cozzio. Expression of cd164 on malignant t cells in sézary syndrome.
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Algorithm 1 K-means++ Clustering in ground truth boxes.
Require: manually labelled a series of ground truth Bi bounding boxes coordinates Bi =(

xi
1, y

i
1, x

i
2, y

i
2

)
, i ∈ n. And clusters number K.

Ensure: optimal prediction box size (w, h)
1: For each box Bi, calculated the width and height by:

wi = (xi
2 − xi

1), h
i = (yi2 − yi1).

2: Choose an initial center t1 uniformly at random from the dataset X = (wi, hi), i ∈ n.
3: while d (x) shortest distance and K cluster not reached do
4: Choose the next center ti , selecting ti = x′ ∈ X with probability d(x′)2∑

x∈X d(x)2
where d (x)

is the distance from a data point x to the closest cluster center.
5: For i ∈ {1, 2, ...K} , set the cluster Ti to be the set of points in X that are closer to ti than

they are to tj for all i 6= j.
return Ti = (wi, hi), i ∈ K.

Algorithm 2 Generalized Intersection over Union(GIoU) as Bounding Box loss.
Require: Predicted Bp and ground truth Bg bounding box coordinates

Bp = (xp
1, y

p
1 , x

p
2, y

p
2) , B

g = (xg
1, y

g
1 , x

g
2, y

g
2) .

Ensure: GIoU loss LGIoU

1: For the predicted box Bp, ensuring xp
2 > xp

1 and yp2 > yp1 :
x̂p
1 = min(xp

1, x
p
2), ŷ

p
1 = min(yp1 , y

p
2), x̂

p
2 = max(xp

1, x
p
2), ŷ

p
2 = max(yp1 , y

p
2).

2: Calculating the area of Bg: Ag = (xg
2 − xg

1)× (yg2 − yg1)
3: Calculating the area of Bp: Ap = (x̂p

2 − x̂g
1)× (ŷp2 − ŷp1)

4: Calculating the intersection area I between Bgand Bp:
xI
1 = max(x̂p

1, x
g
1), y

I
1 = max(ŷp1 , y

g
1), x

I
2 = min(x̂p

2, x
g
2), y

I
2 = min(ŷp2 , y

g
2).

5: if xI
1 < xI

2, y
I
1 < yI2 then

6: I = (xI
2 − xI

1)× (yI2 − yI1)
7: else
8: I ← 0
9: end if

10: Finding the coordinate of the smallest enclosing convex object C:
C = (min(x̂p

1, x
g
1),max(x̂p

2, x
g
2),min(ŷp1 , y

g
1),max(ŷp2 , y

g
2))

11: Calculating area of the smallest enclosing convex object SC

12: IoU = I/(Ag +Ap − I)

13: GIoU = IoU − SC−Ag−Ap+I
SC

return LGIoU = 1−GIoU

Algorithm 3 GBCIOU for objects overlapping
Require: Two cell object Prediction A and B bounding box coordinates in the same flame B =(

xb
1, y

b
1, x

b
2, y

b
2

)
, A = (xa

1 , y
a
1 , x

a
2 , y

a
2 ) . And confidence Score of each object Sb > Sa.

Ensure: Optimal prediction box P .
1: For the box A and B, ensuring: xb

2 > xb
1, yb2 > yb1, xa

2 > xa
1 , ya2 > ya1 .

2: Calculate the intersection area:
I = (min(xa

2 , x
b
2)−max(xa

1 , x
b
1))× (min(ya2 , y

b
2)−max(ya1 , y

b
1))

3: Calculating the Union area, contrarily to the original Union we add small 1e − 16 to balance
the integral side effect of A and B bounding box coordinates, but it will not effect the GIoU :
Union = (xb

2 − xb
1)× (yb2 − yb1) + 1e− 16 + (xa

2 − xa
1)× (ya2 − ya1 )− I

4: Finding the coordinate of the smallest enclosing convex object Cw,h:
w, h = max(xa

2 , x
b
2)−max(xa

1 , x
b
1),max(ya2 , y

b
2)−max(ya1 , y

b
1)

5: Calculating enclose area E: E = w × h+ 1e− 16
6: Calculating GIoU : GIoU = E−Union

E
7: if GIoU < threshold then
8: P ← (min(xa

1 , x
b
1),min(ya1 , y

b
1),max(xa

2 , x
b
2),max(ya2 , y

b
2))

9: else
10: P ← (xb

1, y
b
1, x

b
2, y

b
2)

11: end if
return P
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Figure 6: Precision-Recall curve on val data set of Sezary Syndrom dataset in terms of different
scale YOLO output layers. Both measured on val dataset: 1k training image, 726 test images. The
left image illustrates AttentionNet with only 13 × 13, 26 × 26 YOLO scale output tensors. The
right image illustrates TF-Yolo (He et al., 2019) and YOLOv3 (Redmon & Farhadi, 2018), which
occupied 13 × 13, 26 × 26, 52 × 52 YOLO scale output tensor. PR metrics show that 13 × 13,
26× 26 we adopted are more suitable for Sezary Syndromes cell detection.

Table 1: AttentionNet network structure. We followed the same symmetrical encoder-decoder
architecture (Pu et al., 2016) with additional skip-connections interconnected in the same hierarchy
level. At each hierarchy level, we consecutively performed several point-wise convolutions. It is
worth noting that the final Yolo output layer should equal to 3× (classes+ 5), as stated in Yolov3.

layer Type Filters Size/Stride Input Output
0 Convolutional 16 3× 3/1 416× 416× 3 416× 416× 16
1 Maxpool 2× 2/2 416× 416× 16 208× 208× 16
2 Convolutional 32 3× 3/1 208× 208× 16 208× 208× 32
3 Maxpool 2× 2/2 208× 208× 32 104× 104× 32
4 Convolutional 64 3× 3/1 104× 104× 32 104× 104× 64
5 Maxpool 2× 2/2 104× 104× 64 52× 52× 64
6 Convolutional 128 3× 3/1 52× 52× 64 52× 52× 128
7 Maxpool 2× 2/2 52× 52× 128 26× 26× 128
8 Convolutional 256 3× 3/1 26× 26× 128 26× 26× 256
9 Maxpool 2× 2/2 26× 26× 256 13× 13× 256
10 Convolutional 512 3× 3/1 13× 13× 256 13× 13× 512
11 Maxpool 2× 2/1 13× 13× 512 13× 13× 512
12 Convolutional 1024 3× 3/1 13× 13× 512 13× 13× 1024
13 Convolutional 256 1× 1/1 13× 13× 1024 13× 13× 256
14 Convolutional 512 3× 3/1 13× 13× 256 13× 13× 512
15 Convolutional 18 1× 1/1 13× 13× 512 13× 13× 18
16 YOLO
17 Rout13
18 Convolutional 128 1× 1/1 13× 13× 256 13× 13× 128
19 Upsampling 2× 2/2 13× 13× 256 26× 26× 128
20 Route 19, 8
21 Convolutional 256 3× 3/1 26× 26× 384 26× 26× 256
22 Convolutional 18 1× 1/1 26× 26× 256 26× 26× 18
23 YOLO

7

Publishedas a workshop paper at ICLR21



Table 2: Comparison in terms of detection/segmentation accuracy with Yolo-based methods
in(Redmon & Farhadi, 2018) (He et al., 2019). Here we selected 850 representative images for
training from the sezary syndrome dataset, consist of noise images and typical cell images (manually
labeled HD cell image and SS cell image). In the evaluation stage, we utilized 723 images ( 308
HD cell images, 306 SS cell images, and 109 noises images). We tried to simulate the actual cell
data distribution, as noise image less than cell image in the real sezary dataset. It is worth noting
that by applying AttentionNet*, we mean adopting a bunch of algorithms mentioned above together,
including GBCIOU segmentation, KMean++ Clustering in pro-processing, and 13 × 13, 26 × 26
output Yolo layers, compared to original Yolo widely used in only detection or object localization
scenario without segmentation. TP means cell detected as cell, FP implicit stands for noise detected
as cell, and TN refers to noise image correctly labeled. mAP here refers mean Average Precision.

Method TP FP TN Image No Label mAP
Yolov3-tiny (Redmon & Farhadi, 2018) 63.19% 0.91% 87.16% 33.05% 0.55

AttentionNet* Solution 96.25% 11% 80.73% 1.93% 0.88
TF-Yolo (He et al., 2019)
with Kmean++ Clustering 91.20% 9.17% 66.05% 11.20% 0.73
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Figure 7: K-means++ in clustering posterior boxes. K-means++ clustering in ground-truth anchor
boxes of real cell could provide quantitative guidance for 6 types of fitting anchor box of YOLO
output layer. As real cell sizes various in left (a), with help of K-means++ clustering in (b) , the final
fitting anchor box could better fit cell and further improve the cell confidence score, as shown in
(c2), (c4) with K-means++, (c1) and (c3) without K-means++ clustering only use anchor box size
provided by original YOLOv3 pre-trained on COCO dataset.
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