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ABSTRACT

Recent advancements in computer vision promise to automate medical image
analysis. Rheumatoid arthritis is an autoimmune disease that would profit from
computer-based diagnosis, as there are no direct markers known, and doctors have
to rely on manual inspection of X-ray images. In this work, we present a multi-task
deep learning model that simultaneously learns to localize joints on X-ray images
and diagnose two kinds of joint damage: narrowing and erosion. Additionally,
we propose a modification of label smoothing, which combines classification and
regression cues into a single loss and achieves 5% relative error reduction com-
pared to standard loss functions. Our final model obtained 4th place in joint space
narrowing and 5th place in joint erosion in the global RA2 DREAM challenge.

1 INTRODUCTION

Rheumatoid arthritis (RA) is an autoimmune disease which commonly affects joints in hands, wrists
and feet, and can cause chronic pain (CDC, 2020). One of the impediments to its efficient diagnosis
is the lack of direct markers for RA; rheumatologists have to rely on various clinical clues in order
to determine whether a patient should start antirheumatic therapy (Fukae et al., 2020).

Figure 1: Four example images from the training dataset. The dashed box shows the region of
interest computed during preprocessing, dots mark the ground-truth center of each joint, and colored
regions correspond to the ground-truth segmentation mask for joint detection.

Joint damage scoring is typically done by a highly-trained medical professional, who has to metic-
ulously review several radiographic images of hands and feet. This procedure is not only costly and
time-consuming, but also gives subjective results. The need for medical expertise may delay access
to diagnosis; this is especially true in developing countries, where hospitals are often understaffed.

Recent advancements in deep learning promise to address these challenges, by learning to assess
joint damage directly from data. Early attempts include determining whether the patient has RA
using various clinical data (Fukae et al., 2020), and diagnosing RA by training a convolutional
neural network (CNN) on a radiographs dataset (Üreten et al., 2020).

One established metric to quantify joint damage is the Sharp/van der Heijde (SvH) method (Van der
Heijde et al., 1995). This scoring system separately evaluates two kinds of damage: joint space
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narrowing and joint erosion1. For narrowing, 15 joints in each hand and 6 joints in each foot are
given scores from 0 to 4. For erosion, 16 joints in each hand are given scores from 0 to 5, while 6
joints in each foot are scored from 0 to 10. Finally, the overall SvH score is the sum of all narrowing
and erosion scores, which is an integer ranging from 0 to 448.

In this paper, we propose a deep multi-task (Caruana, 1997) neural architecture that predicts joint
narrowing and erosion scores following the SvH method. We make the following contributions:

• We design a deep CNN architecture to estimate SvH scores for RA damage. It simultane-
ously performs joint localization, joint erosion assessment and joint narrowing assessment.

• We propose local label smoothing, which includes class order in the cross entropy classifi-
cation loss. With local label smoothing, we achieve a 5% relative error reduction.

2 RELATED WORK

There have been many approaches to automated RA diagnosis, both using deep CNNs, and classical
machine learning techniques such as support vector machines (SVM). These works can be divided
into those exploring a coarse-grained task of classifying patients as either normal or suffering from
RA, and those that produce fine-grained SvH scores for all joints.

Detecting RA as binary classification Several works tried to predict whether a patient has RA
by training a classification network on some patient data. Fukae et al. (2020) used various clinical
information converted into an image, which was then processed by an AlexNet (Krizhevsky et al.,
2012). In contrast, other approaches used imaging data directly, either X-ray (Üreten et al., 2020) or
ultrasound (Andersen et al., 2019). However, modelling RA diagnosis with a simple binary variable
lacks explainability, which is essential for clinical adoption (Amann et al., 2020).

Detecting RA using the SvH method Building models that predict fine-grained SvH scores can
lead to a much richer interplay between machine learning models and medical practitioners. Early
works have explored this direction using simple machine learning models, such as SVMs (Tashita
et al., 2017) and shallow CNNs (Hirano et al., 2019). Recently, modern CNN architectures (Li
& Guan, 2020; Israel, 2020; Pataki & Olar, 2020; Dimitrovsky & Ericson, 2020; Stadler & Shi,
2020; Tran & Nguyen, 2020) have been used to predict SvH scores as part of the RA2 Dream
Challenge (Bionetworks, 2021). As our method has also been submitted to this challenge, these
results can be directly compared to ours, and they have been found to achieve similar results on the
challenge test data. We differentiate ourselves from these methods in more detail in Section 4.

3 OUR METHOD

We approach SvH scoring of hand and foot images as simultaneous segmentation and classification.
For training, we utilize four images per patient, with all narrowing and erosion scores annotated
for each image. In theory, we could train a model to predict all scores from raw pixel data without
localization cues. However, data in the medical domain is typically scarce, making this approach
unfeasible, as it is not sample efficient. Therefore, we also assume access to annotations of center
positions of all joints, and use that as an additional training signal.

Segmentation masks During data preprocessing, we convert joint center annotations into a seg-
mentation mask, associating some pixels with the class tied to the corresponding joint, and some
with an additional background class. As the optimal size of the relevant joint region is unclear,
during the labelling stage we only annotate joint centers, and convert them to segmentation masks
during preprocessing. In this way, we decouple generating the ground truth segmentation mask from
annotating the data.

We parametrize the conversion of joint centers into a mask with two hyperparameters r and R, where
r ≤ R. First, for each pixel we find the closest joint center. If that closest center is at distance at
most r, we use it as the ground truth class for that pixel. If this distance is more than R, we associate

1For more background information about the two kinds of joint damage see Appendix A.
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the given pixel with the background class. Pixels where the distance to the closest center falls into
the (r,R〉 range we consider to lie on a boundary; we therefore do not assign them to any class, and
ignore them in the segmentation loss.

Training objective We train our network to minimize a simple weighted average of three per-
pixel objectives. First, for each pixel, we predict the corresponding joint class. In hands, 15 joints
are relevant for narrowing and 16 joints for erosion; these two sets largely overlap apart from some
joints in the wrist, yielding a total of 21 points of interest (Figure 1, left). As there is a natural
mapping between toes and fingers, we map the 6 feet joints (Figure 1, right) into the shared set of 21
joint types. Together with the background class, the total number of classes for the joint localization
head is 22. Next, we classify each positive (joint) pixel to predict a narrowing score (5 possible
values) and an erosion score (6 values). Intuitively, this multi-task formulation decouples joint
localization from damage assessment, as narrowing and erosion is detected with the same network
head, irrespective of the underlying joint. All three prediction tasks are modelled as classification.

As erosion in feet is scored on a 0-10 scale, we train the model to match half of the actual score,
and then multiply the predictions by 2 during inference. In that way, the range of values for erosion
scores is aligned across all joints; this is crucial as damage prediction is joint-agnostic.

Local label smoothing As explained in the previous section, we model the prediction of narrowing
and erosion scores as a classification task. Casting the prediction of a small integer as classification
instead of (constrained) regression is common practice in many machine learning models, as such
approach is typically robust and easy to train (Kozakowski et al., 2019; Wojna et al., 2020). In
preliminary experiments, we found that training for classification worked significantly better than
regression. However, using classification ignores the inherent ordering of the classes: predicting a
narrowing score of 1 is a much better answer if the ground truth is 0, than if the ground truth is 4.

In this work, since SvH scores are small integers, we propose to model the task as classification,
but inject a small regression-inspired bias into the ground truth label. Similarly to label smooth-
ing (Müller et al., 2019), we use a smoothed one-hot vector as ground truth, placing most of the
probability mass on the target class, and a small amount of mass on the other classes. However, in
contrast to classical label smoothing, we only move probability mass to neighbouring classes: if the
ground truth label is x, we place extra probability mass on classes x − 1 and x + 1 (p2 each), and
the remaining 1− p on x. Note that x can be one of the boundary classes (either 0 or the maximum
possible score), in which case 1− p

2 of probability mass is placed on the ground truth class x.

Model We utilise the U-Net architecture, which was shown to achieve strong performance on
biomedical image segmentation (Ronneberger et al., 2015; Çiçek et al., 2016; Schlemper et al.,
2019). As the encoder, we use the EfficientNet B5 network (Tan & Le, 2019); for the decoder we
use traditional upsampling convolutional layers (Zeiler et al., 2011). Following common practice for
U-Nets, we add skip connections from encoder layers into decoder layers at a matching resolution.
As the pixel location within the image can aid the classification into joint types, we use the Coord-
Conv technique (Liu et al., 2018), and concatenate the input image with two additional channels,
corresponding to x and y pixel coordinates.

The final feature map from the last decoder layer is used as input to three separate per-pixel classi-
fiers, which give the output for each of the three tasks specified earlier. Therefore, our architecture
supports multiple tasks via the shared bottom paradigm, as most of the network is shared. This
works well since the tasks are highly related; however, more complex methods could explicitly trade
off positive and negative transfer (Ma et al., 2019; Maziarz et al., 2019; Zhang et al., 2020).

During inference we produce the final narrowing and erosion scores as a weighted average, using
the softmax predictions produced by the model as weights.

4 EXPERIMENTS

Training data We obtained the training data from the RA2 DREAM Challenge (Sun et al., 2021;
Bridges Jr et al., 2010; Ormseth et al., 2015), which contains data from 367 patients, with four
images per patient (both hands and feet). We split the provided training data into train and validation
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Figure 2: The effect of varying local label smoothing (left) and segmentation circle size (right) on
downstream model performance.

sets by using the first out of eight folds as the validation set and the rest of the data as the training
set. We show four example images from the training set in Figure 1.

The input images come with a variable amount of irrelevant black pixels at the borders, while only
the pixels that correspond to the hand or foot are informative. To further normalize the data, we
used classical computer vision techniques such as the canny algorithm to detect the bounding box
of the hand or foot visible in the image. We then cropped each image to the relevant bounding box,
and scaled the resulting image to a resolution of 864 x 928. In Figure 1, we mark the bounding box
computed for the example images with dashed rectangles. As the amount of data was limited, we
also employed several data augmentation techniques: rotation, scaling and horizontal flips.

Results We trained the network using the AdamW optimizer (Loshchilov & Hutter, 2017) and
OneCycle learning rate scheduling method (Smith, 2017). We tuned all hyperparameters by per-
forming small-scale experiments on our local validation set. We compared experiments by comput-
ing the root mean squared error (RMSE) of SvH score predictions for all joints, averaged over all
examples in the validation set.

After hyperparameter tuning, we used a well performing setting to train our model 8 times on all
available data. We used an ensemble of these 8 models to predict SvH scores on unseen test data,
resulting in mean RMSE of 0.4075 for narrowing, and 0.4607 for erosion. On the final leaderboard,
these values fall within 10% relative difference of the top result, obtaining 4th and 5th place for nar-
rowing and erosion, respectively. Small gains that other models submitted to the challenge achieved
on top of our results (Li & Guan, 2020; Israel, 2020; Pataki & Olar, 2020) can be attributed to using
much more complex pipelines (with up to three separate steps, each utilizing a different ML model),
and sometimes performing extensive human labour (by authors learning the basics of RA scoring,
and then manually re-annotating the data to obtain more labels). In contrast, we show that a simple
architecture trained in a multi-task setting can obtain results competitive with the state-of-the-art.
See Appendix B for a detailed comparison of top performing models in the challenge.

Ablation study To better understand which hyperparameters are important to achieve good per-
formance, we performed an ablation study on the validation set. While many hyperparameters had
limited impact on downstream performance or were easy to tune, we found two that showed interest-
ing trends: the degree of local label smoothing, and the radius r used to compute joint segmentation
masks.

We show the ablation results in Figure 2. We see that shifting 0.1 of the probability mass to classes
adjacent to the ground truth improves results, yielding a relative error rate reduction of approxi-
mately 5%. Moreover, we see that to achieve optimal performance r has to be tuned rather carefully,
with the optimal value around r = 32 (given a fixed value of R = 40).

5 CONCLUSION

In this work, we have shown a deep neural model which simultaneously localizes joints and assesses
the severity of rheumatoid arthritis. This was enabled by posing both objectives as pixel-level clas-
sification tasks, and training the model in a multi-task setting. Moreover, we proposed local label
smoothing, which allows to smoothly interpolate between a classification and a regression objective.
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A BACKGROUND ON JOINT DAMAGE ASSESSMENT

Rheumatoid arthritis is typically associated with two kinds of joint damage: joint space narrowing
and bone erosion. Narrowing affects the joint cartilage, which ensures that the distance between
interacting bones allows for a good range of motion. Narrowing means that the cartilage can no
longer maintain a healthy distance between the bones, which leads to increased pressure and friction.
Erosion is related to bone resorption, which is a process in which the body breaks down bone
tissue, releasing the minerals into the bloodstream. While normally this is a part of a healthy life
cycle of bone tissue, it occurs excessively in patients suffering from rheumatoid arthritis, leading to
irreversible damage.

B COMPARISON OF TOP SUBMISSIONS TO THE RA2 DREAM CHALLENGE

The organizers of the RA2 DREAM challenge report full results of the best performing submissions
in Sun et al. (2021). Carefully comparing the approaches, we see that all competing methods use
pipelines containing at least two steps, which typically are joint detection followed by extracting
image patches and separately scoring them. Some also include a third stage, which is either post-
processing to combine all results for a single patient, or pre-processing to normalize the orientation
of the input images. Additionally, Li & Guan (2020) ”served as an extra newbie radiologist to
manually score all the training data”, therefore making use of more labels than other approaches. In
contrast, our method only needs a single model trained in a multi-task setting, and did not use extra
labels, while still attaining performance close to the state-of-the-art.
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