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ABSTRACT

We introduce a simple mixture-based model for predicting cases and deaths in an
epidemic. The model represents time series of cases and fatalities as a mixture of
Gaussians. Empirically, we find it to have low prediction error on COVID-19 case
data,1 with best results when our model selection procedure identifies an appropri-
ate number of Gaussian components. We provide a simple learning algorithm to
identify model parameters from data and establish its efficacy theoretically. Fur-
thermore, we show that such a model is the natural outcome of a stochastic process
on a graph based on a mechanistic SIR framework. This allows the learned pa-
rameters to take on a meaningful interpretation that encodes behaviors, which can
enable policy makers to better understand the progress of the pandemic.

1 INTRODUCTION

In the early stages of the pandemic, the public turned to experts in order to understand the potential
magnitude of SARS-CoV-2. With very few data points available, many models prognosticated a
long period of exponential growth in cases consistent with an SIR model in a large population. Yet,
since human behavior has historically ensured that prolonged exponential growth is rarely the case,
non-mechanistic models such as that from the Institute of Health Metric and Evaluation (IHME)
gained mass attention (Murray, 2020). Rather than assume an underlying process of infection, the
non-mechanistic approach makes the implicit assumption that human behavior will somehow result
in sub-exponential growth.

However, a common critique of such methods is that they lack interpretability. Because the as-
sumptions on behavior are not explicit, it is difficult to understand the effect of endogeneity. While
non-mechanistic methods tend to work well empirically, they lack the same meaningful parameters
of traditional SIR models (Kermack & McKendrick, 1927; Holmdahl & Buckee, 2020).

In this work, we focus on a non-mechanistic approach which, upon further examination, can be
interpreted as a mechanistic SIR model. That is, the model can be seen as a bridge between inter-
pretable mechanistic models and data-efficient non-mechanistic models. Specifically, we assume
that the observed time series of cases has the form

N(t) =

r∑
k=1

Mke
−ak(t−Ck)

2

t = 0, 1, . . . , T . (1)

The idea of modeling cases as a mixture stems from the reality that the disease is spreading to a
population which has diverse regional divisions and includes many jurisdictions (Chandrasekhar
et al., 2020). Since each region has its own features and policies, we expect the observed case
counts to take an additive form. The specific form of the Gaussian time series is chosen in part due
to historical prevalence (Farr, 1840; Santillana et al., 2018), and the parameterization is rigorously
justified in Section 3. While a much wider variety of function classes can explain sub-exponential
growth (Dandekar & Barbastathis, 2020), we restrict to the parsimonious class in equation (1) since
the restrictive assumption better justifies applications to out-of-sample prediction.

Formally, equation (1) admits a simple algorithm for learning time series as a mixture of Gaussian
curves. Further, such a time-series can be seen as arising from a simple stochastic process on a

1This model is available live at http://covidpredictions.mit.edu.
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(a) Idealized Number of Cases N(t) (b) Idealized S(t)

Figure 1: Idealized Time Series for Learning a Mixture.

graph, allowing for meaningful interpretation of parameters. This interpretation can be validated
with mobility data, and shows that policy makers can use this approach to better understand the
progress of the pandemic. From an empirical perspective, we have found that our prediction error
is relatively small compared to other models, with best results when our model selection procedure
selects the correct number of components r.

Ultimately, prediction based on the function class in equation (1) appears to strike a desirable balance
between complex, SIR-based models with time-varying parameters, which are interpretable but may
overfit to existing data or depend too much on historical assumptions, and other commonly used non-
mechanistic models which make overly restrictive parametric assumptions on the curve shape and
lack a meaningful interpretation. Moreover, while policy makers in practice may still prefer to use
deep-learning based methods to prioritize accuracy Shahid et al. (2020), or agent-based models to
allow for refined interpretability Rockett et al. (2020), equation (1) provides a foundation for models
which provide both accurate and interpretable forecasting.

2 AN ALGORITHM FOR LEARNING MIXTURES

In showing that the Gaussian components can be learned from data, we first note that approaches
based on expectation-maximization do not fit the problem setting, as such algorithms require sam-
ples from a distribution as opposed to observations of a 1-D time series. Instead, to identify the
different Gaussian components of the mixture in equation (1), we use a simple algorithm based on
taking the second derivative of the log of the time series. First, given observationsN(t), we compute
the time series

S(t) = log
N(t+ 1)

N(t)
− log

N(t)

N(t− 1)
.

The computation of S(t) in the ideal case is shown in Figure 1, and the following two observations
can be made about S(t). First, we see that if a single Gaussian component is “dominant,” then S(t)
is flat, and is approximately equal to −2ak where ak is the quadratic coefficient of the dominant
cluster. This approximation arises from the similarities S(t) shares with the log-sum-exp func-
tion. Second, we note that in regions where the two clusters have similar counts, S(t) increases and
reaches a local maximum.

In our algorithm, we exploit this local maximum in order to identify the midpoint between Gaus-
sian components, creating disjoint intervals of time in which each interval corresponds to a single
dominant Gaussian curve. Once these midpoints are defined, the problem is reduced to identifying
the parameters of the dominant Gaussian components in each interval. The task of identifying such
parameters is simple as long as the Gaussian curves are well-separated.

To formalize the above claim, we will consider the case r = 2, and assume that the Gaussian curves
in equation (1) satisfy Mk ≤ M and ak ≥ a for for k = 1, 2 for some constants M and a. These
two assumptions are reasonable as they imply that the observed time series is bounded, and that the
shape of the Gaussian curves is not too flat. If such conditions hold, we may say that two Gaussian
curves are ε-separated for some ε > 0 if

|C1 − C2| ≥ 2

√
1

a
log

M

ε
.
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Figure 2: Accuracy of the Mixture Model in Predicting COVID-19 Cases for the United States.
(Left) In terms of median accuracy of one week ahead forecasts, the mixture model (red) places
14th out of 34 available models, and 4th among models that do not use data apart from case counts.2
(Right) An example of a remarkable forecast based on equation (1), when the number of components
r is selected appropriately.

The above condition implies that, if N1(t) ≥ N2(t), then N2(t) ≤ ε, and vice versa. Stated
differently, if one component is “dominant,” the other component will have size at most ε.

Proposition 1 (Algorithmic Guarantee). Assume the Gaussian components are well separated, let
t∗ = arg maxS(t), and define the intervals T1 = {0, . . . , t∗ − 1} and T2 ∈ {t∗, . . . , T}. Then, for
k = 1, 2, the estimates M̂k = maxt∈Tk

N(t) and Ĉk = arg maxt∈Tk
N(t) satisfy

Mk ≤ M̂k ≤Mk + ε , and |Ĉk − Ck| ≤

√
1

ak
log

(
Mk

Mk − ε

)
≈
√

ε

akMk
. (2)

The proof of the claim follows from the definition of ε-separated Gaussian components, and the
approximation for the bound on |Ĉk − Ck| follows from a Taylor expansion when Mk � ε. We
note that this Proposition may be easily generalized to the case r > 2, as the assumption of well-
separated components will make no more than 2 components non-negligible at any particular time
t. In practice, the selection of r is performed using the BIC criterion to appropriately trade off
in-sample accuracy and model complexity.

We also note a variant of Proposition 1 can also be stated for the case in which the observed series
is subject to independent bounded noise. Such a noise condition may be further utilized in order to
provide confidence intervals on the predictions, as depicted in Figure 2.

3 CONNECTIONS TO THE SIR MODEL

While equation (1) provides an intuitive mixture model, and performs well empirically as shown in
Figure 2, it does not immediately provide interpretation in the same way as traditional mechanistic
models (Kermack & McKendrick, 1927). To that end, we introduce a simple stochastic model that
captures population heterogeneity, incorporates traditional epidemiological dynamics, and provides
a mechanistic justification for the time series in equation (1).

Our model begins with a graph G = (V,E), where each node v ∈ V represents an individual
and edges represent connections between individuals by which the disease may spread. To impose
community structure, we will assume that G takes the form of a stochastic block model, in which
V = V1 ∪ V2 can be decomposed into two disjoint communities. Edges form with probability p for

2Predictions are collected from https://github.com/reichlab/covid19-forecast-hub
and true case data is provided by Johns Hopkins.
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each pair of nodes within the same community, and with a probability q � p for individuals from
different communities.3

The spreading model on the graph G follows from the standard SIR model on networks (Easley
et al., 2010). At time t = 0, we assume that one individual in V1 will be infected. Then, for each
time step t, each node will independently attempt to infect its neighbors and succeed with probability
β. After a node has been infected for one time epoch, it will move to the recovered state, where it
can not become infected again.

The final aspect of our model, which encodes human behavior, is the notion of “degree pruning.”
Specifically, at each time step t, each edge will be removed from the graph with probability 1 − γ,
for some 0 < γ < 1. This process represents how individuals may respond to the pandemic, using
measures such as social distancing, masking, and vaccination in order to stop the spread of the virus.

It is worth noting that the above model provides but one formalization by which case counts of
the form in equation (1) can arise, and we prefer this model for its tractability in analysis. In
particular, the model may also arise from an SIR-model with time-varying reproductive rate, or in
other network-based models with a degree distribution which emulates the degree pruning parameter
above. Even situations in which the spread has spatial heterogeneity can be captured, so long as the
simultaneous outbreaks have similar features resulting in global observations of the Gaussian curve,
and the temporal separation of Gaussian curves may reflect different waves of the pandemic (Epstein
et al., 2008).

With the network-based SIR model defined, we can show that within each community, the number of
infected individuals will follow a Gaussian shape in its time series. To be precise, we let ni = |Vi|
and hold the average degree within and outside of each community constant as each ni goes to
infinity. That is, we assume limni→∞ pni = ci for some constants ci, which allows for the following
proposition.

Proposition 2 (Gaussian Components). Let I1(t) represent the random variable indicating the num-
ber of infected individuals in V1. Further, assume that q � p, so that infections resulting from V2
are negligible. Then, in the model above,

lim
n1→∞

E[I1(t)] = e−
1
2 log γt2+log(βc1/

√
γ)t . (3)

The claim above roughly follows from modeling the cases within the community as a branching pro-
cess, and appealing to the definition of γ. Beyond the spread within a community, we are also able to
characterize the spread of the disease between communities, as noted in the following proposition,
assuming that the degree between communities is also held constant, i.e. there exists a parameter
c12 such that c12 = limn2→∞ qn2.

Proposition 3 (Timing Between Communities). DefineX(t) to be the random variable representing
the number of infections in V2 which result from infected individuals in V1. Further, define

tI = min

{
t | lim

n2→∞
lim

n1→∞
E[X(1) + · · ·+X(t)] ≥ 1

}
.

Then,

tI ≥ Φ−1
(

1

c12β
× 1

I1,tot

)
× 1√
− log γ

+ t1,max + 1 ,

where Φ−1 is the inverse cumulative distribution function of the standard normal Gaussian, I1,tot =∫∞
−∞ e

1
2 log γt2+log(βc1

√
γ)tdt, and t1,max = argmaxt I(t)γt.

Thus, we see that if q is sufficiently small, V2 will have to wait a nontrivial period of time for its
first infection, and it is likely that the Gaussian components in the time series will be well-separated.
Ultimately Propositions 2 and 3 allow us to generate the two key components of equation (1), namely
its Gaussian components and additive form, in a mechanistic fashion.

3For simplicity, we consider the case of two communities, although the results can hold properly for k > 2
communities as well, depending on the structure of the block model.
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RETAIL GROCERY PARKS TRANSIT WORKPLACES RESIDENTIAL
Correlation -0.209 -0.286 -0.281 -0.248 0.770 0.109
p-value 0.039 0.004 0.005 0.014 0.454 0.285

Table 1: Comparison of learned γ parameters in each US state to its corresponding Google mobility
data. When using mobility in order to predict degree pruning rates, the six regressors above can
predict degree pruning with an r2 value of 0.092; when restricting to outbreaks that occur before
July 31st, the r2 value increases to 0.616. This suggests the importance of mobility in degree pruning
earlier in the pandemic, and that other factors may be more important in later stages of the pandemic.

4 DISCUSSION

The ability to learn the components of Gaussians empirically and interpret parameters using the
theoretical model provides an opportunity to validate the interpretations of the γ parameters learned
from data. Proposition 2 indicates that empirical γ values can be computed from the quadratic
parameter of each Gaussian curve. The validation of parameters is shown in Table 1, in which we
compare learned γ parameters from case counts in 50 states to corresponding Google Mobility data.
The table validates the interpretation of γ as being associated with individual’s behavior, with four
out of six mobility metrics showing statistical significance in their relationship with γ.

Overall, a key goal of bringing interpretation to non-mechanistic methods is to enable policy makers
to make data-driven decisions. In future work, our hope is to better understand the implications of
interventions on γ, so that practitioners will have the foresight to effectively mitigate the spread of
an epidemic in a closed-loop fashion, ensuring that cases never peak above a specified maximum.
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